【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設(shè)h(x)= , k(x)=2h′(x)x2 , 求證:當(dāng)x>0時(shí),k(x)<+

【答案】解:(1)由題意知,f′(x)=,
故f(1)=ln(1+a)+b=0,
f′(1)=﹣[ln(1+a)+b]=1,
解得,a=b=0;
(2)證明:h(x)==
h′(x)=,
k(x)=2h′(x)x2=;
當(dāng)x>0時(shí),令t=2x,=的導(dǎo)數(shù)為,
顯然t=1取得最大值
即有∈(0,],
設(shè)m(x)=1﹣2xlnx﹣2x,
m′(x)=﹣2lnx﹣4=﹣2(lnx+2),
故m(x)在(0,)上單調(diào)遞增,在(,+∞)上單調(diào)遞減,
故mmax(x)=m()=1+且g(x)與m(x)不于同一點(diǎn)取等號(hào),
故k(x)<(1+)=+
【解析】(1)先求導(dǎo)f′(x),從而由f(1)=ln(1+a)+b=0,f′(1)=1組成方程組求解即可;
(2)化簡(jiǎn)h(x),求導(dǎo)h′(x),從而化簡(jiǎn)k(x)=2h′(x)x2 , 分別判斷與1﹣2xlnx﹣2x的最大值即可證明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△中,已知,直線經(jīng)過點(diǎn)

(Ⅰ)若直線:與線段交于點(diǎn),且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,且當(dāng)x(-∞,0)時(shí),成立,(其中f′(x)f(x)的導(dǎo)數(shù));若, ,,則a,b,c的大小關(guān)系是(

A. a>b>c B. b>a>c C. c>a>b D. c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程(x﹣1)4+mx﹣m﹣2=0各個(gè)實(shí)根x1 , x2…xk(k≤4,k∈N*)所對(duì)應(yīng)的點(diǎn)(xi),(i=1,2,3…k)均在直線y=x的同側(cè),則實(shí)數(shù)m的取值范圍是( 。
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)營(yíng)銷和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化.某調(diào)查機(jī)構(gòu)隨機(jī)抽取8名購(gòu)物者進(jìn)行采訪,4名男性購(gòu)物者中有3名傾向于網(wǎng)購(gòu),1名傾向于選擇實(shí)體店,4名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店.

(1)若從8名購(gòu)物者中隨機(jī)抽取2名,其中男女各一名,求至少1名傾向于選擇實(shí)體店的概率:

(2)若從這8名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量(sin xcos x),(cos x,cos x),(21)

(1)若,求sin xcos x的值;

(2)若0<x≤,求函數(shù)f(x)=·的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對(duì)50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為

Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 的方程為,點(diǎn)的坐標(biāo)為.

(1)求過點(diǎn)且與直線平行的直線方程;

(2)求過點(diǎn)且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對(duì)任意,都有.

(1)若函數(shù)的頂點(diǎn)坐標(biāo)為,求的解析式;

(2)函數(shù)的最小值記為,求函數(shù)上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案