11.已知函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y),f(2)=1,求f(4),f(8)

分析 利用條件,賦值即可得出結(jié)論.

解答 解:∵對任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y),f(2)=1,
∴f(4)=f(2×2)=f(2)+f(2)=2,f(8)=f(2×4)=f(2)+f(4)=3.

點評 本題考查抽象函數(shù),考查賦值法的運用,考查學生的計算能力,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,AB是拋物線y2=2px(p>0)的一條經(jīng)過焦點F的弦,AB與兩坐標軸不垂直,已知點M(-1,0),∠AMF=∠BMF,則p的值是( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設集合A={1,3,x},B={1,x2-x+1},求A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知x=$\frac{1}{2}$,y=$\frac{1}{3}$,求$\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}$-$\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知A,B,C是三角形ABC的三個內(nèi)角,則3sinA十4sinB+18sinC的最大值是$\frac{35\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一元二次不等式ax2+bx+c<0的解集為R,則必有(  )
A.$\left\{\begin{array}{l}{a>o}\\{^{2}-4ac>0}\end{array}\right.$B.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac<0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac>0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.sin(19π+$\frac{π}{3}$)的值是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},若M∩N≠∅,則m2+n2的最小值( 。
A.$\frac{4}{5}$B.$\frac{3}{4}$C.(6-2$\sqrt{5}$)D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在等差數(shù)列{an}中,a2+a6=$\frac{3π}{2}$,則sin(2a4-$\frac{π}{3}$)=-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案