【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種.若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如表:
交強(qiáng)險(xiǎn)浮動因素和浮動費(fèi)率比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
【答案】解:(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a. 由統(tǒng)計(jì)數(shù)據(jù)可知:
P(X=0.9a)= ,P(X=0.8a)= ,P(X=0.7a)= ,P(X=a)= ,P(X=1.1a)= ,
P(X=1.3a)= .
所以X的分布列為:
X | 0.9a | 0.8a | 0.7a | a | 1.1a | 1.3a |
P |
所以EX=0.9a× +0.8a× +0.7a× +a× +1.1a× +1.3a× = = ≈942.
(Ⅱ)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + = .
②設(shè)Y為該銷售商購進(jìn)并銷售一輛二手車的利潤,Y的可能取值為﹣5000,10000.
所以Y的分布列為:
Y | ﹣5000 | 10000 |
P |
所以EY=﹣5000× +10000× =5000.
所以該銷售商一次購進(jìn)100輛該品牌車齡已滿三年的二手車獲得利潤的期望值為100EY=50萬元
【解析】(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.由統(tǒng)計(jì)數(shù)據(jù)可知其概率及其分布列.(II)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + .②設(shè)Y為該銷售商購進(jìn)并銷售一輛二手車的利潤,Y的可能取值為﹣5000,10000.即可得出分布列與數(shù)學(xué)期望.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn),邊上的中線所在的直線方程為,邊上的高所在直線的方程為.
()求的頂點(diǎn)、的坐標(biāo).
()若圓經(jīng)過不同的三點(diǎn)、、,且斜率為的直線與圓相切于點(diǎn),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某物流公司進(jìn)行倉儲機(jī)器人升級換代期間,第一年有機(jī)器人臺,平均每臺機(jī)器人創(chuàng)收利潤萬元.預(yù)測以后每年平均每臺機(jī)器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機(jī)器人數(shù)量每年都比上一年減少.
(1)設(shè)第年平均每臺機(jī)器人創(chuàng)收利潤為萬元,在用機(jī)器人數(shù)量為臺,求,的表達(dá)式;
(2)依上述預(yù)測,第幾年該物流公司在用機(jī)器人創(chuàng)收的利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1 , x2(1)求滿足條件的最小正整數(shù)a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點(diǎn)A.
(1)判斷直線l1和l2是否垂直?請給出理由.
(2)求過點(diǎn)A且與直線l3:3x+y+4=0平行的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“酒后駕車”和“醉酒駕車”,其檢測標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當(dāng)時(shí),為酒后駕車;當(dāng)時(shí),為醉酒駕車.某市交通管理部門于某天晚上8點(diǎn)至11點(diǎn)設(shè)點(diǎn)進(jìn)行一次攔查行動,共依法查出60名飲酒后違法駕駛機(jī)動車者,如圖為這60名駕駛員抽血檢測后所得結(jié)果畫出的頻率分布直方圖(其中的人數(shù)計(jì)入人數(shù)之內(nèi)).
1)求此次攔查中醉酒駕車的人數(shù);
2)從違法駕車的60人中按酒后駕車和醉酒駕車?yán)梅謱映闃映槿?/span>8人做樣本進(jìn)行研究,再從抽取的8人中任取2人,求兩人中恰有1人醉酒駕車的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,上頂點(diǎn)為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求線段的長度;
(Ⅲ)是否存在,使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于
兩點(diǎn).
(1)求線段的長度;
(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com