【題目】設(shè)函數(shù)f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點(diǎn)x1 , x2(1)求滿足條件的最小正整數(shù)a的值;
(Ⅲ)求證:

【答案】解:(Ⅰ)f′(x)=2x﹣(a﹣2)﹣ = ,(x>0). 當(dāng)a≤0時,f′(x)>0在(0,+∞)上恒成立,
所以函數(shù)f(x)單調(diào)遞增區(qū)間為(0,+∞),此時f(x)無單調(diào)減區(qū)間;
當(dāng)a>0時,由f′(x)>0,得 ,f′(x)<0,得
所以函數(shù)f(x)的單調(diào)增區(qū)間為( ,+∞),單調(diào)減區(qū)間為(0, );
(Ⅱ)①由(Ⅰ)可知函數(shù)f(x)有兩個零點(diǎn),所以a>0,
f(x)的最小值f( )<0,即﹣a2+4a﹣4aln <0,
∵a>0,∴
,顯然h(a)在(0,+∞)上為增函數(shù),

∴存在a0∈(2,3),h(a0)=0,
當(dāng)a>a0時,h(a)>0;當(dāng)0<a<a0時,h(a)<0,
所以滿足條件的最小正整數(shù)a=3.
又當(dāng)a=3時,f(3)=3(2﹣ln3)>0, = <0,f(1)=0,
所以a=3時,f(x)有兩個零點(diǎn).
綜上所述,滿足條件的最小正整數(shù)a的值為3.
(Ⅲ)證明:不妨設(shè)0<x1<x2 ,
于是 ﹣alnx1= ﹣alnx2
∴a= .,
因?yàn)? =0,當(dāng)x∈ 時,f′(x)<0;當(dāng)x∈ 時,f′(x)>0.
故只要證 即可,即證明x1+x2 .,
即證 +(x1+x2)(lnx1﹣lnx2)> ﹣2x2
也就是證
設(shè) =t∈(0,1).
令m(t)=lnt﹣ ,則m′(t)= =
∵t>0,所以m'(t)≥0,
當(dāng)且僅當(dāng)t=1時,m'(t)=0,所以m(t)在(0,+∞)上是增函數(shù).
又m(1)=0,所以當(dāng)m∈(0,1),m(t)<0總成立,所以原題得證
【解析】(Ⅰ)f′(x)=2x﹣(a﹣2)﹣ = ,(x>0).對a分類討論:a≤0,a>0,即可得出單調(diào)性.(Ⅱ)(1)由(Ⅰ)可知函數(shù)f(x)有兩個零點(diǎn),所以a>0,f(x)的最小值f( )<0,即﹣a2+4a﹣4aln <0,可得 ,令 ,顯然h(a)在(0,+∞)上為增函數(shù),且 ,因此存在a0∈(2,3),h(a0)=0,進(jìn)而得出小正整數(shù)a的值.(Ⅲ)不妨設(shè)0<x1<x2 , 于是 ﹣alnx1= ﹣alnx2 , 可得a= .由于 =0,當(dāng)x∈ 時,f′(x)>0.只要證 即可,即證明x1+x2 ,即證 .設(shè) =t∈(0,1).令m(t)=lnt﹣ ,利用導(dǎo)數(shù)研究其單調(diào)性即可證明結(jié)論.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】做一個無蓋的圓柱形水桶,若要使其體積是,且用料最省,則圓柱的底面半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較注射兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗(yàn),將這200只家兔隨機(jī)地分成兩組,毎組100只,其中一組注射藥物,另一組注射藥物.

(1)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;

(2)下表1和表2分別是注射藥物后的試驗(yàn)結(jié)果.(皰疹面積單位: )

表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表

表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表

(ⅰ)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大小;

(ⅱ)完成下面列聯(lián)表,并回答能否有的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.

表3:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的正方形,平面,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設(shè)點(diǎn)是線段上一個動點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且過點(diǎn), 是橢圓上異于長軸端點(diǎn)的兩點(diǎn).

(1)求橢圓的方程;

(2)已知直線 ,且,垂足為 ,垂足為,若,且的面積是面積的5倍,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種.若普通6座以下私家車投保交強(qiáng)險第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如表:

交強(qiáng)險浮動因素和浮動費(fèi)率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為a的菱形ABCD中,,E,FPAAB的中點(diǎn)。

(1)求證: EF||平面PBC ;

(2)求E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)經(jīng)過點(diǎn)(﹣1, ),其離心率e=
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓C相切,切點(diǎn)為T,且l與直線x=﹣4相交于點(diǎn)S.
試問:在x軸上是否存在一定點(diǎn),使得以ST為直徑的圓恒過該定點(diǎn)?若存在,求出該點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,an+1= 若S3n≤λ3n1恒成立,則實(shí)數(shù)λ的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案