【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結論.

【答案】(1)見解析(2)(3)是線段靠近點的三等分點.

【解析】試題分析:(1)由正方形性質得,由平面,再根據(jù)線面垂直判定定理得平面(2)利用空間向量求二面角:先根據(jù)條件建立空間直角坐標系,設立各點坐標,利用方程組解各面法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)二面角與向量夾角關系求二面角(3)設點坐標,根據(jù)平面,列方程解得點坐標,再確定位置

試題解析:證明:∵平面,平面,

,

又∵是正方形,

,

,

平面

)∵,,兩兩垂直,所以建立如圖空間直角坐標系,

與平面所成角為,即,

,

,可知:,

,,,,

,

設平面的法向量為,則

,即,

,則

因為平面,所以為平面的法向量,

,

所以

因為二面角為銳角,

故二面角的余弦值為

依題意得,設,

平面,

,即,解得:,

∴點的坐標為

此時,

∴點是線段靠近點的三等分點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點,
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A﹣BCFE中,四邊形EFCB為梯形,EF∥BC,且EF= BC,△ABC是邊長為2的正三角形,頂點F在AC上的射影為點G,且FG= ,CF= ,BF=
(1)證明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點,邊上的中線所在的直線方程為邊上的高所在直線的方程為

)求的頂點、的坐標.

若圓經過不同的三點、,且斜率為的直線與圓相切于點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,求

(1)過點A,B且周長最小的圓的方程;

(2)過點A,B且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司進行倉儲機器人升級換代期間,第一年有機器人臺,平均每臺機器人創(chuàng)收利潤萬元預測以后每年平均每臺機器人創(chuàng)收利潤都比上一年增加萬元,但該物流公司在用機器人數(shù)量每年都比上一年減少

(1)設第年平均每臺機器人創(chuàng)收利潤為萬元,在用機器人數(shù)量為臺,求,的表達式;

(2)依上述預測,第幾年該物流公司在用機器人創(chuàng)收的利潤最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點x1 , x2(1)求滿足條件的最小正整數(shù)a的值;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當為酒后駕車,為醉酒駕車某市交通管理部門于某天晚上8點至11點設點進行一次攔查行動,共依法查出60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數(shù)計入人數(shù)之內)

1求此次攔查中醉酒駕車的人數(shù);

2從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取2人,求兩人中恰有1人醉酒駕車的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結果如下圖表所示:

1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?

(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

同步練習冊答案