12.己知函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期為π,直線x=-$\frac{π}{24}$為它的圖象的一條對稱軸.
(1)求ω,φ的值;
(2)在△ABC中a,b,c分別為角A,B,C的對應(yīng)邊,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,b+c=6,求b,c值.

分析 (1)由已知利用三角函數(shù)周期公式可求ω,由余弦函數(shù)的對稱性,結(jié)合范圍0<φ<$\frac{π}{2}$可求φ的值.
(2)由已知可求$cos(A-\frac{π}{12})=\frac{{\sqrt{2}}}{2}$,結(jié)合范圍-$\frac{π}{12}$<A-$\frac{π}{12}$<$\frac{11π}{12}$,可求A的值,進而利用余弦定理可求bc=9,結(jié)合a+c=6,即可得解b,c的值.

解答 (本題滿分10分)
解:(1)函數(shù)f(x)的最小正周期為π=$\frac{2π}{ω}$,∴ω=2,…(2分)
x=-$\frac{π}{24}$為f(x)的圖象的一條對稱軸,
∴$2×(-\frac{π}{24})+ϕ=kπ(0<ϕ<\frac{π}{2})∴ϕ=\frac{π}{12}$…(5分)
(2)∵$f(-\frac{A}{2})=2cos(A-\frac{π}{12})=\sqrt{2}$,
∴$cos(A-\frac{π}{12})=\frac{{\sqrt{2}}}{2}$,
∵-$\frac{π}{12}$<A-$\frac{π}{12}$<$\frac{11π}{12}$,
∴A-$\frac{π}{12}$=$\frac{π}{4}$,解得:A=$\frac{π}{3}$,…(7分)
∵a2=b2+c2-2bccosA=(b+c)2-3bc,即bc=9.    …(9分)
又∵b+c=6,
∴解得到b=c=3.…(10分)

點評 本題主要考查了三角函數(shù)周期公式,余弦函數(shù)的對稱性,余弦定理在解三角形中的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2.將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD.
(1)若M是A1D的中點,求A1B與平面CME所成角的正弦值;
(2)線段A1B上是否存在點P,使平面PME與平面CME垂直,若存在,求$\frac{{{A_1}P}}{{{A_1}B}}$的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點P(2,$\sqrt{2}$),離心率e=$\frac{\sqrt{2}}{2}$,直線l的漸近線為x=4.
(1)求橢圓C的方程;
(2)經(jīng)過橢圓右焦點D的任一直線(不經(jīng)過點P)與橢圓交于兩點A,B,設(shè)直線l相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3,問是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線 y+3=0的傾斜角是(  )
A.B.45°C.90°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.9-2=( 。
A.81B.$\frac{1}{81}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某家庭進行理財投資,根據(jù)長期收益率市場調(diào)查和預(yù)測,投資債券等穩(wěn)鍵型產(chǎn)品A的收益f(x)與投資金額x的關(guān)系是f(x)=k1x,(f(x)的部分圖象如圖1);投資股票等風(fēng)險型產(chǎn)品B的收益g(x)與投資金額x的關(guān)系是$g(x)={k_2}\sqrt{x}$,(g(x)的部分圖象如圖2);(收益與投資金額單位:萬元).
(1)根據(jù)圖1、圖2分別求出f(x)、g(x)的解析式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產(chǎn)品A及股票等風(fēng)險型產(chǎn)品B兩種產(chǎn)品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m=$\frac{tan(α+β+γ)}{tan(α-β+γ)}$,若sin2(α+γ)=3sin2β,則m=( 。
A.-1B.$\frac{3}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正三棱柱ABC-A1B1C1中,AB=AA1=2,點D為AC的中點,點E為AA1上.
(Ⅰ)當(dāng)AA1=4AE時,求證:DE⊥平面BDC1
(Ⅱ)當(dāng)AA1=2AE時,求三棱錐C1-EBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于冪函數(shù)y=xk及其圖象,有下列四個命題:
①其圖象一定不通過第四象限;
②當(dāng)k<0時,其圖象關(guān)于直線y=x對稱;
③當(dāng)k>0時,函數(shù)y=xk是增函數(shù);
④y=xk的圖象與y=x-k的圖象至少有兩個交點
其中正確的命題個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案