【題目】某校社團(tuán)活動(dòng)開展有聲有色,極大地推動(dòng)了學(xué)生的全面發(fā)展,深受學(xué)生歡迎,每屆高一新生都踴躍報(bào)名加入.現(xiàn)已知高一某班60名同學(xué)中有4名男同學(xué)和2名女同學(xué)參加心理社,在這6名同學(xué)中,2名同學(xué)初中畢業(yè)于同一所學(xué)校,其余4名同學(xué)初中畢業(yè)于其他4所不同的學(xué)校.現(xiàn)從這6名同學(xué)中隨機(jī)選取2名同學(xué)代表社團(tuán)參加校際交流(每名同學(xué)被選到的可能性相同).

(Ⅰ)在該班隨機(jī)選取1名同學(xué),求該同學(xué)參加心理社團(tuán)的概率;

(Ⅱ)求從6名同學(xué)中選出的2名同學(xué)代表至少有1名女同學(xué)的概率.

【答案】(1);(2)

【解析】

根據(jù)古典概型概率計(jì)算方法,易得參加心理社同學(xué)個(gè)概率。

列出6個(gè)學(xué)生選出2名同學(xué)代表的所有情況,根據(jù)古典概率計(jì)算,即可得到至少有1名女同學(xué)的概率。

Ⅰ)依題意,該班60名同學(xué)中共有6名同學(xué)參加心理社,

所以在該班隨機(jī)選取1名同學(xué),該同學(xué)參加心理社的概率為.

Ⅱ)設(shè)表示參加心理社的男同學(xué),表示參加心理社的女同學(xué),

則從6名同學(xué)中選出的2名同學(xué)代表共有15種等可能的結(jié)果:

其中至少有1名女同學(xué)的結(jié)果有9種:,

根據(jù)古典概率計(jì)算公式,從6名同學(xué)中選出的2名同學(xué)代表至少有1名女同學(xué)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為.

(Ⅰ)求曲線的直角坐標(biāo)方程與直線的參數(shù)方程;

(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C離心率為,其短軸長為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點(diǎn),PQ為橢圓C上兩動(dòng)點(diǎn),直線POAQE,直線QOAPD,直線OP與直線OQ的斜率分別為,,且, ,為非零實(shí)數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程,

1)若方程有兩個(gè)正根,求:m的取值范圍;

2)若方程有兩個(gè)正根,且一個(gè)比2大,一個(gè)比2小,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過右焦點(diǎn)且不垂直于坐標(biāo)軸,的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn).

(I)求點(diǎn)的橫坐標(biāo);

(II)當(dāng)最大時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

(3)在抽取的選擇“地理”的學(xué)生中按分層抽樣再抽取6名,再從這6名學(xué)生中抽取2人了解學(xué)生對(duì)“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時(shí)期趙爽在《勾股方圓圖注》中,對(duì)勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為幾何解釋的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.對(duì)任意實(shí)數(shù),有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的解集;

(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案