12.在平面直角坐標(biāo)系中,已知點B(1,1),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,點A的極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且l過點A,過點B與直線l平行的直線為l1,l1與曲線C相交于兩點M,N
(Ⅰ)求曲線C上的點到直線l距離的最小值
(Ⅱ)求|MN|的值.

分析 (I)點A的極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,代入可得a=4$\sqrt{2}$.直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=4$\sqrt{2}$,展開為:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=4$\sqrt{2}$,即可化為直角坐標(biāo)方程.利用點到直線的距離公式與和差公式、三角函數(shù)的單調(diào)性即可得出.
(II)設(shè)l1的方程為:x+y+m=0,把B(1,1)代入上述方程可得直線l1的方程為:x+y-2=0.可得參數(shù)方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),代入曲線C的普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.利用根與系數(shù)的關(guān)系及其|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.

解答 解:(I)點A的極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,∴a=$4\sqrt{2}cos(\frac{π}{4}-\frac{π}{4})$=4$\sqrt{2}$.
∴直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=4$\sqrt{2}$,展開為:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=4$\sqrt{2}$,化為直角坐標(biāo)方程:x+y-8=0.
∴曲線C上的點到直線l距離d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+φ)-8|}{\sqrt{2}}$≥$\frac{8-\sqrt{7}}{\sqrt{2}}$=$\frac{8\sqrt{2}-\sqrt{14}}{2}$,當(dāng)sin(θ+φ)=1時取等號.
(II)設(shè)l1的方程為:x+y+m=0,把B(1,1)代入上述方程可得:m=-2.
∴直線l1的方程為:x+y-2=0.可得參數(shù)方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),代入曲線C的普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
化為:7t2+2$\sqrt{2}$t-10=0,∴t1+t2=-$\frac{2\sqrt{2}}{7}$,t1•t2=-$\frac{10}{7}$,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-\frac{2\sqrt{2}}{7})^{2}-4×(-\frac{10}{7})}$=$\frac{12\sqrt{2}}{7}$.

點評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程的應(yīng)用、弦長公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,已知ABCD-A′B′C′D′為正方體,則下列結(jié)論錯誤的是( 。
A.平面ACB′∥平面A′C′DB.B′C⊥BD′
C.B′C⊥DC′D.BD′⊥平面A′C′D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足sinA=2sinBcosC,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個整數(shù),則實數(shù)k的取值范圍為($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.我國古代,9是數(shù)字之極,代表尊貴之意,所以中國古代皇家建筑中包含許多與9相關(guān)的設(shè)計.例如,北京天壇圓丘的地面由扇環(huán)形的石板鋪成(如圖所示),最高一層是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊,共有9圈,則前9圈的石板總數(shù)是405.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,以F1F2為直徑的圓與雙曲線右支的一個交點為P,PF1與雙曲線相交于點Q,且|PQ|=2|QF1|,則該雙曲線的離心率為 ( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{e_1}$和$\overrightarrow{e_2}$是兩個單位向量,夾角為$\frac{π}{3}$,則($\overrightarrow{e_1}-\overrightarrow{e_2}$)$•(-3\overrightarrow{e_1}+2\overrightarrow{e_2})$等于(  )
A.-8B.$\frac{9}{2}$C.$-\frac{5}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,則此三棱錐外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項數(shù)列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求數(shù)列{an}的通項an

查看答案和解析>>

同步練習(xí)冊答案