1.已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,則此三棱錐外接球的表面積為8π.

分析 以PA,PB,PC分棱構(gòu)造一個長方體,這個長方體的外接球就是三棱錐P-ABC的外接球,由此能求出三棱錐的外接球的表面積.

解答 解:如圖,PA,PB,PC兩兩垂直,設(shè)PC=h,
則PB=$\sqrt{B{C}^{2}-P{C}^{2}}$=$\sqrt{7-{h}^{2}}$,PA=$\sqrt{A{C}^{2}-P{C}^{2}}$=$\sqrt{4-{h}^{2}}$,
∵PA2+PB2=AB2,∴4-h2+7-h2=5,解得h=$\sqrt{3}$,
三棱錐P-ABC,PA,PB,PC兩兩垂直,且PA=1,PB=2,PC=$\sqrt{3}$,
∴以PA,PB,PC分棱構(gòu)造一個長方體,
則這個長方體的外接球就是三棱錐P-ABC的外接球,
∴由題意可知,這個長方體的中心是三棱錐的外接球的心,
三棱錐的外接球的半徑為R=$\frac{\sqrt{1+4+3}}{2}$=$\sqrt{2}$,
所以外接球的表面積為S=4πR2=4$π×(\sqrt{2})$2=8π.
故答案為:8π.

點(diǎn)評 本題考查三棱錐的外接球的表面積的求法,是中檔題,解題時要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),其中a∈R
(1)討論函數(shù)f(x)極值點(diǎn)的個數(shù),并說明理由;
(2)若任意x∈(0,+∞),f(x)>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,已知點(diǎn)B(1,1),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且l過點(diǎn)A,過點(diǎn)B與直線l平行的直線為l1,l1與曲線C相交于兩點(diǎn)M,N
(Ⅰ)求曲線C上的點(diǎn)到直線l距離的最小值
(Ⅱ)求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,△AB1C1,△B1B2C2,△B2B3C3是三個邊長為2的等邊三角形,且有一條邊在同一直線上,邊B3C3上有5個不同的點(diǎn)P1,P2,P3,P4,P5,設(shè)${m_i}=\overrightarrow{A{C_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,5),則m1+m2+…+m5=90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中記載了這樣一個問題:“三百七十八里關(guān),出行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其大意為:“有一人走了378里路,第一天健步行走,從第二天起因腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問此人第二天天走了(  )里?
A.76B.96C.146D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ex(lnx+x-1).
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)試比較f(x)與1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z1滿足z1(1-i)=2(i為虛數(shù)單位),若復(fù)數(shù)z1滿足z1+z2是純虛數(shù),z1•z2是實(shí)數(shù),求復(fù)數(shù)z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克),如表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案