13.已知復(fù)數(shù)z1滿足z1(1-i)=2(i為虛數(shù)單位),若復(fù)數(shù)z1滿足z1+z2是純虛數(shù),z1•z2是實數(shù),求復(fù)數(shù)z2

分析 z1(1-i)=2(i為虛數(shù)單位),可得z1(1-i)(1+i)=2(1+i),可得z1.設(shè)z2=a+bi(a,b∈R),利用復(fù)數(shù)的運算法則、純虛數(shù)的定義、復(fù)數(shù)為實數(shù)的充要條件即可得出.

解答 解:z1(1-i)=2(i為虛數(shù)單位),∴z1(1-i)(1+i)=2(1+i),z1=1+i.
設(shè)z2=a+bi(a,b∈R),∵復(fù)數(shù)z1滿足z1+z2=(a+1)+i(b+1)是純虛數(shù),z1•z2=(a-b)+(a+b)i實數(shù),
∴a+1=0,b+1≠0,a+b=0,
解得a=-1,b=1.
∴復(fù)數(shù)z2=-1+i.

點評 本題考查了共軛復(fù)數(shù)的性質(zhì)、復(fù)數(shù)的運算法則、純虛數(shù)的定義、復(fù)數(shù)為實數(shù)的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足sinA=2sinBcosC,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{e_1}$和$\overrightarrow{e_2}$是兩個單位向量,夾角為$\frac{π}{3}$,則($\overrightarrow{e_1}-\overrightarrow{e_2}$)$•(-3\overrightarrow{e_1}+2\overrightarrow{e_2})$等于( 。
A.-8B.$\frac{9}{2}$C.$-\frac{5}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,則此三棱錐外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點P為圓x2+y2=25上一動點,若點P由點(3,4)逆時針旋轉(zhuǎn)45°到達Q點,則點Q的坐標(biāo)為(-$\frac{\sqrt{2}}{2}$,$\frac{7\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,a1=1,b1=8,a2+b2=18,a3+b3=35,數(shù)列{an}的前n項和為Sn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=$\frac{{a}_{n+2}}{_{n}{S}_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\overrightarrow i=(1,0)、\overrightarrow j=(0,1)$,則與$2\overrightarrow i+3\overrightarrow j$垂直的向量是( 。
A.$3\overrightarrow i+2\overrightarrow j$B.$-2\overrightarrow i+3\overrightarrow j$C.$-3\overrightarrow i+2\overrightarrow j$D.$2\overrightarrow i-3\overrightarrow j$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項數(shù)列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求數(shù)列{an}的通項an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù){an}滿足an+1+1=$\frac{{a}_{n}+1}{2{a}_{n}+3}$,且a1=1,則數(shù)列{$\frac{2}{{a}_{n}+1}$}的前20項和為780.

查看答案和解析>>

同步練習(xí)冊答案