A. | ①② | B. | ①③ | C. | ②③ | D. | ①④ |
分析 根據不等式的性質分別對①②③④判斷即可.
解答 解:若$\frac{1}{a}$>$\frac{1}$>0,則b>a>0,
①a3<b3,正確;
②令b=2,a=1,則loga+23=logb+13;故②錯誤;
③由$\sqrt$-$\sqrt{a}$<$\sqrt{b-a}$,
得:b+a-2$\sqrt{ab}$<b-a,
故a<$\sqrt{ab}$,故a<b,成立,
故③正確;
④∵b>a>0,∴a2-2ab+b2>0,∴a2-ab+b2>ab(*).
而a,b均為正數,∴a+b>0,
∴(a+b)(a2-ab+b2)>ab(a+b),
∴a3+b3>a2b+ab2 成立.
而2ab2>a2b+ab2,故④不一定成立,故④錯誤;
故選:B.
點評 本題主要考查用分析法和綜合法證明不等式,此題還可用比較法證明,體會不同方法間的區(qū)別聯系,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2π-\sqrt{3}}$ | B. | $\frac{\sqrt{3}}{2(π-\sqrt{3}})$ | C. | $\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$ | D. | $\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 11 | B. | 12 | C. | 26 | D. | 27 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com