10.中國(guó)詩詞大會(huì)的播出引發(fā)了全民的讀書熱,某小學(xué)語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),小于85分且不小于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛好者”的稱號(hào),根據(jù)該次比賽的成就按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為( 。
A.2B.4C.5D.6

分析 由莖葉圖可得,獲”詩詞能手”的稱號(hào)有16人,再根據(jù)分層抽樣的定義即可求出.

解答 解:由莖葉圖可得,詩詞能手”的稱號(hào)有16人,
據(jù)該次比賽的成就按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,
則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為10×$\frac{16}{40}$=4人,
故選:B

點(diǎn)評(píng) 本題考查了分層抽樣和莖葉圖,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=px(p>0)的焦點(diǎn)為F,過焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),以AB為直徑的圓的方程為x2+y2-2x-4y-4=0,則此拋物線的標(biāo)準(zhǔn)方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}中,a2+a3+a4=3,Sn為等差數(shù)列{an}的前n項(xiàng)和,則S5=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.股票市場(chǎng)的前身是起源于1602年荷蘭人在阿姆斯特河大橋上進(jìn)行荷屬東印度公司股票的買賣,而正規(guī)的股票市場(chǎng)最早出現(xiàn)在美國(guó).2017年2月26號(hào),中國(guó)證監(jiān)會(huì)主席劉士余談了對(duì)股市的幾點(diǎn)建議,給廣大股民樹立了信心.最近,張師傅和李師傅要將家中閑置資金進(jìn)行投資理財(cái).現(xiàn)有兩種投資方案,且一年后投資盈虧的情況如下:
(1)投資股市:
投資結(jié)果獲利不賠不賺虧損
概率$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
(2)購買基金:
投資結(jié)果獲利不賠不賺虧損
概率p$\frac{1}{3}$q
(Ⅰ)當(dāng)$p=\frac{1}{2}$時(shí),求q的值;
(Ⅱ)已知“購買基金”虧損的概率比“投資股市”虧損的概率小,求p的取值范圍;
(Ⅲ)已知張師傅和李師傅兩人都選擇了“購買基金”來進(jìn)行投資,假設(shè)三種投資結(jié)果出現(xiàn)的可能性相同,求一年后他們兩人中至少有一人獲利的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,則$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\frac{1}{a}$>$\frac{1}$>0,有四個(gè)不等式:①a3<b3;②loga+23>logb+13;③④$\sqrt$-$\sqrt{a}$<$\sqrt{b-a}$;④a3+b3>2ab2,則下列組合中全部正確的為( 。
A.①②B.①③C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2017年1月25日智能共享單車項(xiàng)目摩拜單車正式登陸濟(jì)南,兩種車型采用分段計(jì)費(fèi)的方式,Mobike  Lite型(Lite版)和經(jīng)典版每30分鐘收0.5元(不足30分鐘的部分按30分鐘計(jì)算).有甲、乙、丙三人相互對(duì)立的到租車點(diǎn)租車騎行(各租一車一次).設(shè)甲、乙、丙不超過30分鐘還車的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,三人租車時(shí)間都不會(huì)超過60分鐘,甲、乙均租用Lite版單車,丙租用經(jīng)典版單車.
(1)求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;
(2)設(shè)甲、乙、丙三人所付費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知f(x)=2sin4x+2cos4x+cos22x-$\sqrt{3}$sin4x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{16}$,$\frac{3π}{16}$]上的最小值及取最小值時(shí)對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正整數(shù)m的3次冪有如下分解規(guī)律:13=1;23=3+5;33=7+9+11;        43=13+15+17+19;…若m3(m∈N+)的分解中最小的數(shù)為91,則m的值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案