2.三棱錐A-BCD中,E是BC的中點(diǎn),AB=AD,BD⊥DC
(I)求證:AE⊥BD;
(II)若DB=2DC=$\sqrt{2}$AB=2,且二面角A-BD-C為60°,求AD與面BCD所成角的正弦值.

分析 (I)取BD的中點(diǎn)F,連EF,AF,推導(dǎo)出FE∥DC.從而BD⊥FE.再求出BD⊥AF,從而BD⊥面AFE,由此能證明BD⊥FE.
(II)由BD⊥AF,得∠AFE即為二面角A-BD-C的平面角,由此能求出AD與面BCD所成角的正弦值.

解答 證明:(I)如圖,取BD的中點(diǎn)F,連EF,AF,
∵E為BC中點(diǎn),F(xiàn)為BD中點(diǎn),∴FE∥DC.
又BD⊥DC,∴BD⊥FE.
∵AB=AD∴BD⊥AF
又AF∩FE=F,AF,F(xiàn)E?面AFE,
∴BD⊥面AFE,AE?面AFE,
∵AE⊥BD,∴BD⊥FE.
解:(II)由(I)知BD⊥AF,
∴∠AFE即為二面角A-BD-C的平面角   
∴∠AFE=60°∵AB=AD=2,
∴△ABD為等腰直角三角形,故$AF=\frac{1}{2}BD=1$,
又FE=$\frac{1}{2}DC=\frac{1}{2}$,
∴AE2=AF2+FE2-2AF•FE•cos∠AFE=1+$\frac{1}{4}-2×1×\frac{1}{2}×cos60°$=$\frac{3}{4}$,
 即AE=$\frac{\sqrt{3}}{2}$,∴AE2+FE2=1=AF2,∴AE⊥FE,
又由(1)知BD⊥AE,且BD∩FE=F,
BD?面BDC,F(xiàn)E?面BDC,
∴AE⊥平面BDC,
∴∠ADE就是AD與面BCD所成角,
在Rt△AED中,AE=$\frac{\sqrt{3}}{2}$,AD=2,
∴AD與面BCD所成角的正弦值sin$∠ADE=\frac{AE}{AD}=\frac{\sqrt{6}}{4}$.

點(diǎn)評 本題考查線線垂直的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計算:${∫}_{1}^{3}$(x-5)dx=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.5個排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭
(2)甲不排頭,也不排尾
(3)甲、乙、丙三人必須在一起
(4)甲、乙、丙三人兩兩不相鄰
(5)甲在乙的左邊(不一定相鄰)
(6)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),對于任意x∈R滿足f(-x)=f(x),且相鄰兩條對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求函數(shù)$y=f(x)+f({x+\frac{π}{4}})$的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知${(1-2x)^{2017}}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{2017}}{({x-1})^{2017}}$,則a1-2a2+3a3-4a4+…2016a2016+2017a2017( 。
A.2017B.4034C.-4034D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=sin2x+sinx-2的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{9}{4}$,0]B.[-2,$\frac{1}{4}$]C.[-2,0]D.[-$\frac{9}{4}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)過點(diǎn)A(2,2)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,四邊形BCC1B1為菱形,點(diǎn)M是棱AC上不同于A,C的點(diǎn),平面B1BM與棱A1C1交于點(diǎn)N,AB=BC=2,∠ABC=90°,∠BB1C1=60°.
(Ⅰ)求證:B1N∥平面C1BM;
(Ⅱ)求證:B1C⊥平面ABC1
(Ⅲ)若二面角A-BC1-M為30°,求AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在區(qū)間[1,5]上任取一個數(shù)記為m,在區(qū)間[1,4]上任取一個數(shù)記為n.
(1)若m,n∈N*,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦點(diǎn)在x軸上的橢圓的概率;
(2)若m,n∈R,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦點(diǎn)在x軸上的橢圓的概率.

查看答案和解析>>

同步練習(xí)冊答案