【題目】已知直線過點,圓,直線與圓交于不同兩點.

(Ⅰ)求直線的斜率的取值范圍;

(Ⅱ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.

【答案】(1) (2)見解析

【解析】

I)方法一,設(shè)出直線的方程,聯(lián)立直線方程和圓的方程,利用判別式大于零列不等式,求得的取值范圍.方法二,設(shè)出直線的方程,利用圓心到直線的距離小于半徑列不等式,解不等式求得點的取值范圍.II)根據(jù)弦的垂直平分線過圓心及點的坐標(biāo),求得垂直平分線的直線方程,但此方程和直線不垂直,由此判斷出不存在這樣的直線.

(Ⅰ)法1:直線l的方程為,則

,故

法2:直線l的方程為,即

圓心為C(3,0),圓的半徑為1則圓心到直線的距離,

因為直線與有交于A,B兩點,故,故

(Ⅱ)假設(shè)存在直線垂直平分于弦,此時直線,

,故的斜率,由(1)可知,不滿足條件.

所以,不存在直線垂直于弦

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)若,求的單調(diào)增區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為分鐘,有1200名小學(xué)生參加了此項調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計概率,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:

(1)求分?jǐn)?shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

(2)根據(jù)頻率分布直方圖,估計本次考試成績的眾數(shù)、均值;

(3)根據(jù)評獎規(guī)則,排名靠前10%的同學(xué)可以獲獎,請你估計獲獎的同學(xué)至少需要所少分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若平面直角坐標(biāo)系內(nèi)兩點P,Q滿足條件:①PQ都在函數(shù)f(x)的圖象上;②PQ關(guān)于原點對稱,則稱點對(PQ)是函數(shù)f(x)的圖象上的一個友好點對”(點對(P,Q)與點對(QP)看作同一個友好點對”).已知函數(shù),若此函數(shù)的友好點對有且只有一對,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時,若不等式上恒成立,求實數(shù)的取值范圍;

2)若為常數(shù),且函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合的元素個數(shù)為個且元素為正整數(shù),將集合分成元素個數(shù)相同且兩兩沒有公共元素的三個集合,即,,其中,,若集合中的元素滿足,,則稱集合完美集合例如:“完美集合,此時.若集合,為完美集合”,的所有可能取值之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù).

1)求的值;

2)若對任意恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)=3x

(1)若fx)=8,求x的值;

(2)對于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案