【題目】已知集合的元素個數(shù)為個且元素為正整數(shù),將集合分成元素個數(shù)相同且兩兩沒有公共元素的三個集合,即,,其中,,若集合中的元素滿足,,則稱集合完美集合例如:“完美集合,此時.若集合,為完美集合”,的所有可能取值之和為(

A.B.C.D.

【答案】D

【解析】

討論集合與集合,根據(jù)完美集合的概念知集合,根據(jù)建立等式求的值.

首先當(dāng)時,不可能是完美集合,

證明:假設(shè)是完美集合,

中元素最小為3,則不可能成立;

中元素最小為4,則,不可能成立;

中元素最小為5,則不可能成立;

故假設(shè)是完美集合不成立,則不可能是完美集合.

所以;

若集合,根據(jù)完美集合的概念知集合;

若集合,根據(jù)完美集合的概念知集合;

若集合,根據(jù)完美集合的概念知集合;

的所有可能取值之和為

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,為銳角,底面是以為斜邊的等腰直角三角形,

(1)證明:平面 平面

(2)若直線與底面成角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;

(2)某校早上8:10開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時間段內(nèi)到校時刻是等可能的,求兩人到校時刻相差10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點,圓,直線與圓交于不同兩點.

(Ⅰ)求直線的斜率的取值范圍;

(Ⅱ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)m>0時,若對于區(qū)間[1,2]上的任意兩個實數(shù)x1,x2,且x1<x2,都有,成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,),且兩個焦點,的坐標(biāo)依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,求當(dāng)為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);

(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,當(dāng)時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一.已知一個“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為

A. B. C. 39 D.

查看答案和解析>>

同步練習(xí)冊答案