【題目】如圖,斜三棱柱中,為銳角,底面是以為斜邊的等腰直角三角形, .
(1)證明:平面 平面;
(2)若直線與底面成角為, ,求二面角的余弦值.
【答案】(1)證明見解析.
(2) .
【解析】分析:(1)先證明平面,再證明平面 平面.(2)利用空間向量求二面角的余弦值.
詳解:(1)因為,,,所以平面.
因為平面,所以平面 平面.
(2)因為 平面,在平面內(nèi)作,垂足為,
所以平面.因為底面成角為,所以.
因為,,所以平面,
所以,
四邊形是菱形.因為為銳角,
所以,于是是中點.
設(shè),以為坐標(biāo)原點,為x軸正方向,建立如圖所示的空間直角坐標(biāo)系.
則,,,,
,,.
設(shè)是平面的一個法向量,
則,即,
可以取.
設(shè)是平面的一個法向量,
則,即,
可以取.
因為,二面角平面角是鈍角,
故二面角的余弦值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意的實數(shù),都有:,且當(dāng)時,有.
(1)求;
(2)求證:在上為增函數(shù);
(3)若,且關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中, 平面,底面為菱形, , 是中點, 是的中點, 是上的點.
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)是中點,且時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當(dāng)a=1時,求函數(shù)f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對本市小學(xué)生課業(yè)負(fù)擔(dān)情況進行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為分鐘,有1200名小學(xué)生參加了此項調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計概率,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的概率是( )
A. 0.32 B. 0.36 C. 0.7 D. 0.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合的元素個數(shù)為個且元素為正整數(shù),將集合分成元素個數(shù)相同且兩兩沒有公共元素的三個集合,即,,,,其中,,,若集合中的元素滿足,,,則稱集合為“完美集合”例如:“完美集合”,此時.若集合,為“完美集合”,則的所有可能取值之和為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com