19.要得到函數(shù)$y=cos({2x-\frac{π}{3}})$的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{12}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

分析 先根據(jù)誘導公式化簡可得y=sin[2(x+$\frac{π}{12}$)],再根據(jù)左加右減的原則進行平移從而可得到答案.

解答 解:∵$y=cos({2x-\frac{π}{3}})$=sin(2x+$\frac{π}{6}$)=sin[2(x+$\frac{π}{12}$)],
∴只需將函數(shù)y=sin2x的圖象向左平移$\frac{π}{12}$個單位即可得到函數(shù)$y=cos({2x-\frac{π}{3}})$的圖象.
故選:A.

點評 本題主要考查兩角和與差的公式和三角函數(shù)的平移,三角函數(shù)平移時一定要遵循左加右減上加下減的原則.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知α∈(0,π),$sinα+cosα=\frac{1}{5}$.求sin2α和sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知冪函數(shù)f(x)的圖象經(jīng)過點$({\frac{1}{2},8})$,則f(3)=$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若AD=CD=2,求點P到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上單調(diào)遞增,則ω的最大值為2.且當ω取最大值時f(x)的值域為[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.學校為了提高學生的數(shù)學素養(yǎng),開設(shè)了《數(shù)學史選講》、《對稱與群》、《球面上的幾何》三門選修課程,供高二學生選修,已知高二年級共有學生600人,他們每個人都參加且只參加一門課程的選修,為了了解學生對選修課的學習情況,現(xiàn)用分層抽樣的方法從中抽取30名學生進行座談.據(jù)統(tǒng)計,參加《數(shù)學史選講》、《對稱與群》、《球面上的幾何》的人數(shù)依次組成一個公差為-40的等差數(shù)列,則應(yīng)抽取參加《數(shù)學史選講》的學生的人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某校校慶期間,大會秘書團計劃從包括甲、乙兩人在內(nèi)的七名老師中隨機選擇4名參加志愿者服務(wù)工作,根據(jù)工作特點要求甲、乙兩人中至少有1人參加,則甲、乙都被選中且列隊服務(wù)時不相鄰的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=cos 2x+2sin x的最大值為( 。
A.$\frac{3}{4}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習冊答案