2.已知點P($\sqrt{3}$,1),Q(cosx,sinx),O為坐標原點,函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若A為△ABC的內角,f(A)=4,BC=3,△ABC的面積為$\frac{3\sqrt{3}}{4}$,求△ABC的周長.

分析 (Ⅰ)根據(jù)平面向量的坐標表示與數(shù)量積運算求出f(x),即可得出f(x)的最小正周期;
(Ⅱ)根據(jù)f(A)=4求出A的值,再根據(jù)△ABC的面積和余弦定理求出b+c的值,即可求出周長.

解答 解:(Ⅰ)點P($\sqrt{3}$,1),Q(cosx,sinx),
∴$\overrightarrow{OP}$=($\sqrt{3}$,1),$\overrightarrow{QP}$=($\sqrt{3}$-cosx,1-sinx),
函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$
=$\sqrt{3}$($\sqrt{3}$-cosx)+(1-sinx)
=3-$\sqrt{3}$cosx+1-sinx
=-(sinx+$\sqrt{3}$cosx)+4
=-2sin(x+$\frac{π}{3}$)+4;
∴函數(shù)f(x)的最小正周期為T=2π;
(Ⅱ)A為△ABC的內角,f(A)=4,
∴-2sin(A+$\frac{π}{3}$)+4=4,
∴sin(A+$\frac{π}{3}$)=0,
∴A+$\frac{π}{3}$=π,解得A=$\frac{2π}{3}$;
又BC=a=3,
∴△ABC的面積為:S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bcsin$\frac{2π}{3}$=$\frac{3\sqrt{3}}{4}$,
解得bc=3;
由余弦定理得:
a2=b2+c2-2bccosA
=b2+c2-2bccos$\frac{2π}{3}$
=b2+c2+bc
=32=9,
∴b2+c2=6;
∴(b+c)2=b2+c2+2bc=6+6=12,
∴b+c=2$\sqrt{3}$,
∴△ABC的周長為a+b+c=3+2$\sqrt{3}$.

點評 本題考查了平面向量的坐標表示與數(shù)量積運算問題,也考查了三角恒等變換與余弦定理的應用問題,是綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.在正方體ABCD-A1B1C1D1中,底面ABCD是邊長為3$\sqrt{2}$的正方形,AA1=3,E是線段A1B1上一點,若二面角A-BD-E的正切值為3,則三棱錐A-A1D1E外接球的表面積為35π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知過點Q($\frac{9}{2}$,0)的直線與拋物線C:y2=4x交于兩點A(x1,y1),B(x2,y2).
(Ⅰ)求證:y1y2為定值.
(Ⅱ)若△AOB的面積為$\frac{81}{4}$(O為坐標原點),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F且斜率為1的直線與漸近線有且只有一個交點,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個設計幾何體體積的問題.意思是如果兩個等高的幾何體在同高處處截得兩幾何體的截面面積恒等,那么這兩個幾何體的體積相等.設A,B為兩個等高的幾何體,p:A,B的體積不相等,q:A,B在同高處的截面面積不恒相等,根據(jù)祖暅原理可知,p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3-x,2),$\overrightarrow{c}$=(4,x)滿足(6$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$=8,則x等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在高中學習過程中,同學們經常這樣說:“數(shù)學物理不分家,如果物理成績好,那么學習數(shù)學就沒什么問題.”某班針對“高中生物理學習對數(shù)學學習的影響”進行研究,得到了蘇俄生的物理成績與數(shù)學成績具有線性相關關系的結論.現(xiàn)從該班隨機抽取5名學生在一次考試中的數(shù)學和物理成績,如表:
成績   編號12345
物理(x)9085746863
數(shù)學(y)1301251109590
(1)求數(shù)學成績y對物理成績x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$($\widehat$精確到0.1).若某位學生的物理成績?yōu)?0分,預測他的數(shù)學成績;
(2)要從抽取的這五位學生中隨機選出2位參加一項知識競賽,求選中的學生的數(shù)學成績至少有一位高于120分的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(參考數(shù)據(jù):902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F(xiàn)分別是棱AB,BC,B1C1的中點,G是棱BB1上的動點.
(1)當$\frac{BG}{{B{B_1}}}$為何值時,平面CDG⊥平面A1DE?
(2)求平面AB1F與平面AD1E所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{2x-xlnx(x>0)}\\{-{x^2}-\frac{3}{2}x(x≤0)}\end{array}}\right.$有且僅有四個不同的點關于直線y=1的對稱點在直線kx+y-1=0上,則實數(shù)k的取值范圍為(  )
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},\frac{3}{4})$C.$(\frac{1}{3},1)$D.$(\frac{1}{2},2)$

查看答案和解析>>

同步練習冊答案