12.在正方體ABCD-A1B1C1D1中,底面ABCD是邊長為3$\sqrt{2}$的正方形,AA1=3,E是線段A1B1上一點,若二面角A-BD-E的正切值為3,則三棱錐A-A1D1E外接球的表面積為35π.

分析 過E作EF∥AA1.交AB與F,過F作FG⊥DB于G,則∠EGF就是二面角A-BD-E的平面角,由tan∠EGF=3,可得FG=1,求出三棱錐A-A1D1E外接球的直徑即可

解答 解:過E作EF∥AA1.交AB與F,過F作FG⊥DB于G,
則∠EGF就是二面角A-BD-E的平面角,∵tan∠EGF=$\frac{EF}{FG}=3$,
∴FG=1,則BF=$\sqrt{2}$,∴$AF=2\sqrt{2}$,
∴三棱錐A-A1D1E外接球的直徑為$\sqrt{8+9+18}=\sqrt{35}$,
∴外接球的表面積為35π.
故答案為:35π.

點評 本題考查了三棱錐的外接球的表面積,關(guān)鍵是找到動點位置,求出半徑,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程$\frac{1}{f(x)-4}$=a的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.雙曲線2x2-y2=16的實軸長等于4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)g(x)=ax3+2(1-a)x2-3ax在區(qū)間(-∞,$\frac{a}{3}$)內(nèi)單調(diào)遞減,則a的取值范圍為( 。
A.a≥1B.a≤1C.a≥-1D.-1≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx.
(Ⅰ)設(shè)函數(shù)g(x)=$\frac{f(x)}{x-1}$,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=t有兩個不相等的實數(shù)根x1,x2,求證:x1+x2$>\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,則這個幾何體的表面積為(  )
A.$\frac{(8+π)\sqrt{3}}{2}$B.$\frac{(8+π)\sqrt{3}}{6}$C.$\frac{π}{2}$+4+$\frac{5}{2}$$\sqrt{3}$D.$\frac{3}{2}$π+8+$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合$A=\{x|{(\frac{1}{2})^x}≤1\}$,B={x|x2-2x-8≤0},則A∩B=( 。
A.{x|-2≤x≤0}B.{x|2≤x≤4}C.{x|0≤x≤4}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$sinβ=\frac{1}{3}\;,\;\;sin(α-β)=\frac{3}{5}$,其中α,β均為銳角.
(1)求cos2β的值;
(2)求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點P($\sqrt{3}$,1),Q(cosx,sinx),O為坐標(biāo)原點,函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{QP}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為$\frac{3\sqrt{3}}{4}$,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案