8.總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機(jī)數(shù)表選取4個個體.選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出的第4個個體的編號為29
7806 6572 0802 6314 2947 1821 9800
3204 9234 4935 3623 4869 6938 7481

分析 根據(jù)隨機(jī)數(shù)表,依次進(jìn)行選擇即可得到結(jié)論.

解答 解:按照隨機(jī)數(shù)表的讀法,所得樣本編號依次為08,02,14,29.可知第4個個體的編號為29.
故答案為:29.

點(diǎn)評 本題主要考查簡單隨機(jī)抽樣的應(yīng)用,正確理解隨機(jī)數(shù)法是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從0,1,2,3,4五個數(shù)字中隨機(jī)取兩個數(shù)字組成無重復(fù)數(shù)字的兩位數(shù),則所得兩位數(shù)為偶數(shù)的概率是$\frac{5}{8}$.(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.秦九韶是我國南宋時代的數(shù)學(xué)家,其代表作《數(shù)書九章》是我國13世紀(jì)數(shù)學(xué)成就的代表之一;如圖是秦九韶算法的一個程序框圖,則輸出的S為(  )
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知矩陣A=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$,設(shè)曲線C:(x-y)2+y2=1在矩陣A對應(yīng)的變換下得到曲線C′,求C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{sinx}{{2{e^x}}}$的圖象的大致形狀是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知矩形ABCD中,AB=3,AD=4,沿矩形ABCD的對角線AC折起得三棱錐B-ACD,則三棱錐B-ACD的外接球半徑R=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{4}{3}$x3-2kx2-x+1有兩個不同的極值點(diǎn)x1,x2(x1<1<x2),若g(x)=$\frac{2x-k}{{x}^{2}+1}$,且x∈[1,x2]時,g(x)≥$\frac{k}{2}$恒成立,則實數(shù)k的取值范圍是(  )
A.($\frac{3}{4}$,+∞)B.[1,+∞)C.($\frac{3}{4}$,1]D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,ABCD-A1B1C1D1是棱長為1的正方體,任作平面α與對角線AC1垂直,使得α與正方體的每個面都有公共點(diǎn),這樣得到的截面多邊形的面積為S,周長為l的范圍分別是[$\frac{\sqrt{3}}{2}$,$\frac{3\sqrt{3}}{4}$]、{3$\sqrt{2}$}(用集合表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)求函數(shù)f(x)=$\frac{|3x+2|-|1-2x|}{|x+3|}$的最大值M.
(Ⅱ)是否存在滿足a2+b2≤c≤M的實數(shù)a,b,c使得2(a+b+c)+1≥0.

查看答案和解析>>

同步練習(xí)冊答案