1.已知矩形ABCD中,AB=3,AD=4,沿矩形ABCD的對角線AC折起得三棱錐B-ACD,則三棱錐B-ACD的外接球半徑R=$\frac{5}{2}$.

分析 先確定球心的位置為對角線AC的中點,然后求出球的半徑,

解答 解:由題意知,球心到四個頂點的距離相等,∵Rt△ABC,Rt△ADC有公共斜邊AC,
則球心為對角線AC的中點,且其半徑為AC長度的一半$\frac{1}{2}\sqrt{{3}^{2}+{4}^{2}}=\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點評 本題考查球的內(nèi)接多面體,外接球的半徑與折疊二面角的大小沒有關(guān)系,是解題的關(guān)鍵,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)直線l的極坐標(biāo)方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射線$\sqrt{3}$x-y=0(x≥0)與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從3名男同學(xué)和2名女同學(xué)中任選2名參加體能測試,則恰有1名男同學(xué)參加體能測試的概率為$\frac{3}{5}$.(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知(x-1)(ax+1)6展開式中含x2項的系數(shù)為0,則正實數(shù)a=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機數(shù)表選取4個個體.選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出的第4個個體的編號為29
7806 6572 0802 6314 2947 1821 9800
3204 9234 4935 3623 4869 6938 7481

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,則側(cè)棱BB1所在直線與平面AB1C1所成的角為( 。
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.春天是鼻炎和感冒的高發(fā)期,某人在春季里鼻炎發(fā)作的概率為0.8,鼻炎發(fā)作且感冒的概率為0.6,則此人鼻炎發(fā)作的條件下,他感冒的概率為(  )
A.0.48B.0.40C.0.64D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱AA1,B1C1,C1D1,DD1的中點,則下列直線中與直線EF相交的是( 。
A.直線CC1B.直線C1D1C.直線HC1D.直線GH

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若數(shù)列{an}和{bn}的項數(shù)均為n,則將$\sum_{i=1}^n{|{a_i}-{b_i}|}$定義為數(shù)列{an}和{bn}的距離.
(1)已知${a_n}={2^n}$,bn=2n+1,n∈N*,求數(shù)列{an}和{bn}的距離dn
(2)記A為滿足遞推關(guān)系${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$的所有數(shù)列{an}的集合,數(shù)列{bn}和{cn}為A中的兩個元素,且項數(shù)均為n.若b1=2,c1=3,數(shù)列{bn}和{cn}的距離大于2017,求n的最小值.
(3)若存在常數(shù)M>0,對任意的n∈N*,恒有$\sum_{i=1}^n{|{a_i}-{b_i}|}≤M$則稱數(shù)列{an}和{bn}的距離是有界的.若{an}與{an+1}的距離是有界的,求證:$\{a_n^2\}$與$\{a_{n+1}^2\}$的距離是有界的.

查看答案和解析>>

同步練習(xí)冊答案