17.已知兩平行平面α、β間的距離為2$\sqrt{3}$,點(diǎn)A、B∈α,點(diǎn)C、D∈β,且AB=4,CD=3,若異面直線AB與CD所成角為60°,則四面體ABCD的體積為6.

分析 過C作CE∥AB,使CE=AB,則VD-ABC=VD-BCE=VB-CDE

解答 解:在β內(nèi)過C作CE∥AB,使得CE=AB,
則四邊形CEBA是平行四邊形,
∵兩平行平面α、β間的距離為2$\sqrt{3}$,
∴B到平面CDE的距離h=2$\sqrt{3}$.
∴VD-ABC=VD-BCE=VB-CDE=$\frac{1}{3}{S}_{△CDE}•h$=$\frac{1}{3}×\frac{1}{2}×3×4×sin60°×2\sqrt{3}$=6.
故答案為:6.

點(diǎn)評 本題考查了棱錐的體積計(jì)算,將棱錐的底面轉(zhuǎn)化到平面β內(nèi)是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$+$\sqrt{2}$,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最小值為$\sqrt{3}$-$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)斜率為1的直線l經(jīng)過橢圓上頂點(diǎn),并與橢圓交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$g(x)=x+\frac{1}{x}$上各點(diǎn)處的切線傾斜角為α,則α的取值范圍( 。
A.(0,π)B.$({0,\frac{π}{4}})$C.$[{0,\frac{π}{4}})∪({\frac{3}{4}π,π})$D.$[{0,\frac{π}{4}})∪({\frac{π}{2},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-e-x(x∈R).
(1)若g(x)=f(x)-f(2-x),解不等式g(2x+1)+g(x)>0;
(2)若函數(shù)h(x)=mf'(x)+f(x)-ex-m+1存在零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3+ax2+bx+a2在x=-1處有極值8,則f(1)等于( 。
A.-4B.16C.-4或16D.16或18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠C=90°,點(diǎn)M在邊BC上,且滿足BC=$\frac{3}{2}$CM,若tan∠BAM=$\frac{{\sqrt{6}}}{12}$,則sin∠MAC=$\frac{{\sqrt{10}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=f(x2-1)的定義域?yàn)椋?2,2),函數(shù)g(x)=f(x-1)+f(3-2x).則函數(shù)g(x)的定義域?yàn)閇0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知角α的終邊經(jīng)過點(diǎn)P(-3,4).
(1)求$\frac{sin(π-α)+cos(-α)}{tan(π+α)}$的值;     
 (2)求$\frac{1}{2}$sin2α+cos2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化簡后等于( 。
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

查看答案和解析>>

同步練習(xí)冊答案