7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化簡(jiǎn)后等于( 。
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

分析 利用向量的加減法的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$=$\overrightarrow{AC}$-$\overrightarrow{BC}$=$\overrightarrow{AB}$.
故選:C.

點(diǎn)評(píng) 本題考查向量的加減法的運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩平行平面α、β間的距離為2$\sqrt{3}$,點(diǎn)A、B∈α,點(diǎn)C、D∈β,且AB=4,CD=3,若異面直線AB與CD所成角為60°,則四面體ABCD的體積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從雙曲線C:b2x2-a2y2=a2b2(a>0,b>0)的左焦點(diǎn)F1引圓x2+y2=a2的切線為T,且l交雙曲線的右支于點(diǎn)P,若點(diǎn)T是線段F1P的中點(diǎn),則雙曲線C的漸近線方程為2x±y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從某企業(yè)生產(chǎn)的某種產(chǎn)品中隨機(jī)抽取10件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo),其頻率分布表如下:
質(zhì)量指標(biāo)值分組[10,30)[30,50)[50,70]
頻率0.10.60.3
則可估計(jì) 這批產(chǎn)品的質(zhì)量指標(biāo)的方差為( 。
A.140B.142C.143D.134.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=4,S4=16,數(shù)列{bn}滿足bn=an+an+1,則數(shù)列{bn}的前9和T9=180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=asinx+blog2$\frac{1+x}{1-x}$+2(a,b為常數(shù)),若f(x)在(0,1)上有最小值為-4,則f(x)在(-1,0)上有( 。
A.最大值8B.最大值6C.最大值4D.最大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩人約定在6時(shí)到7時(shí)之間在某處會(huì)面,并約定先到者應(yīng)等候另一個(gè)人20分鐘,過時(shí)即可離去,求兩人能會(huì)面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求值:cos2α+cos2β+sin2αsin2β-cos2αcos2β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)隨機(jī)變量X的概率分布列如表,則P(|X-3|=1)( 。
X1234
P$\frac{1}{3}$m$\frac{1}{4}$$\frac{1}{6}$
A.$\frac{7}{12}$B.$\frac{5}{12}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案