考點:數(shù)列與不等式的綜合,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由S
n+n=
a
n.得n≥2時,
sn-1+n-1=an-1,兩式作差可得數(shù)列{a
n+1}是公比為3的等比數(shù)列,即可求得結(jié)論;
(Ⅱ)由題意可得b
n+1-b
n>0,即2×3
n-1>λ(-2)
n,對任意的n∈N
*恒成立,即可解得結(jié)論;
(Ⅲ)由c
n=
=
,放縮即可得出結(jié)論.
解答:
(Ⅰ)解:∵S
n+n=
a
n.①
∴n=1時,a
1+1=
a1,∴a
1=2,
n≥2時,
sn-1+n-1=an-1,②
由①-②得,a
n+1=
an-
an-1,即a
n=3a
n-1+2,
∴a
n+1=3(a
n-1+1),
∴數(shù)列{a
n+1}是公比為3的等比數(shù)列,又a
1+1=3,
∴a
n+1=3×3
n-1,∴
an=3n-1.
(Ⅱ)解:∵數(shù)列{b
n}滿足b
n=a
n+λ•(-2)
n且數(shù)列{b
n}為遞增數(shù)列,
∴b
n+1-b
n>0,即a
n+1+λ•(-2)
n+1-a
n-λ•(-2)
n>0,
∴3
n-3
n-1>λ(-2)
n,
即2×3
n-1>λ(-2)
n,對任意的n∈N
*恒成立,
∴-
()n-1<λ<
()n-1,∴-1<λ<
.
(Ⅲ)證明:c
n=
=
=
-
•
()<,
∴c
1+c
2+…+c
n<
,
又∵c
n=
=
>
=
->
-
,
∴c
1+c
2+…+c
n>
-
=
-(1-
)>
-.
∴
-
<c
1+c
2+…+c
n<
.
點評:本題主要考查等比數(shù)列的定義及遞增數(shù)列的性質(zhì)和不等式的證明等知識,考查學生分析問題、解決問題的能力及運算求解能力,屬于難題.