8.經(jīng)過(guò)點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長(zhǎng)為4$\sqrt{5}$,則直線l的方程為  (  )
A.x-2y+9=0或x+2y+3=0B.2x-y+9=0或2x+y+3=0
C.x+2y+3=0或x-2y+9=0D.x+2y+9=0或2x-y+3=0

分析 求出圓心到直線l的距離d,利用弦長(zhǎng)公式:$z9rtv1x^{2}+(\frac{L}{2})^{2}$=r2即可得出.

解答 解:圓x2+y2+4y-21=0配方可得:x2+(y+2)2=25,可得圓心C(0,-2),半徑r=5.
設(shè)經(jīng)過(guò)點(diǎn)M(-3,-3)的直線l的方程為:y+3=k(x+3),化為:kx-y+3k-3=0.
圓心到直線l的距離d=$\frac{|2+3k-3|}{\sqrt{1+{k}^{2}}}$=$\frac{|3k-1|}{\sqrt{1+{k}^{2}}}$,
∴$(\frac{4\sqrt{5}}{2})^{2}$+$(\frac{3k-1}{\sqrt{1+{k}^{2}}})^{2}$=52,化為:2k2-3k-2=0,解得k=2或-$\frac{1}{2}$.
∴直線l的方程為 x+2y+9=0或2x-y+3=0.
故選:D.

點(diǎn)評(píng) 本題考查了直線與圓相交弦長(zhǎng)問(wèn)題、點(diǎn)的直線的距離公式、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在口袋中有不同編號(hào)的5個(gè)白球和4個(gè)黑球,如果不放回地依次取兩個(gè)球,則在第一次取到白球的條件下,第二次也取得白球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x,y∈R+,$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列與y=|x|是同一函數(shù)的是( 。
A.y=($\sqrt{x}$)2B.y=$\sqrt{{x}^{2}}$C.y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.拋物線x2=y上的點(diǎn)(2,4)到其焦點(diǎn)的距離為( 。
A.$\frac{9}{4}$B.$\frac{17}{4}$C.$\frac{5}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(Ⅰ)若a,b,均為正數(shù),且a+b=1.證明:(1+$\frac{1}{a}$)(1+$\frac{1}$)≥9;
(Ⅱ)若不等式|x+3|-|x-a|≥2的解集為{x|x≥1},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C的中心在坐標(biāo)原點(diǎn)O,兩焦點(diǎn)分別為F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),過(guò)點(diǎn)P(0,2)的直線l與橢圓C相交于A、B兩點(diǎn),且△AF1F2的周長(zhǎng)為4+2$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=(x-2)(x+a)是偶函數(shù),則實(shí)數(shù)a的值為( 。
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,若A<B<C,且A+C=2B,最大邊為最小邊的2倍,則三個(gè)角A:B:C=( 。
A.1:2:3B.2:3:4C.3:4:5D.4:5:6

查看答案和解析>>

同步練習(xí)冊(cè)答案