A. | x-2y+9=0或x+2y+3=0 | B. | 2x-y+9=0或2x+y+3=0 | ||
C. | x+2y+3=0或x-2y+9=0 | D. | x+2y+9=0或2x-y+3=0 |
分析 求出圓心到直線l的距離d,利用弦長(zhǎng)公式:$z9rtv1x^{2}+(\frac{L}{2})^{2}$=r2即可得出.
解答 解:圓x2+y2+4y-21=0配方可得:x2+(y+2)2=25,可得圓心C(0,-2),半徑r=5.
設(shè)經(jīng)過(guò)點(diǎn)M(-3,-3)的直線l的方程為:y+3=k(x+3),化為:kx-y+3k-3=0.
圓心到直線l的距離d=$\frac{|2+3k-3|}{\sqrt{1+{k}^{2}}}$=$\frac{|3k-1|}{\sqrt{1+{k}^{2}}}$,
∴$(\frac{4\sqrt{5}}{2})^{2}$+$(\frac{3k-1}{\sqrt{1+{k}^{2}}})^{2}$=52,化為:2k2-3k-2=0,解得k=2或-$\frac{1}{2}$.
∴直線l的方程為 x+2y+9=0或2x-y+3=0.
故選:D.
點(diǎn)評(píng) 本題考查了直線與圓相交弦長(zhǎng)問(wèn)題、點(diǎn)的直線的距離公式、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=($\sqrt{x}$)2 | B. | y=$\sqrt{{x}^{2}}$ | C. | y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$ | D. | y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{17}{4}$ | C. | $\frac{5}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 0 | C. | -2 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:2:3 | B. | 2:3:4 | C. | 3:4:5 | D. | 4:5:6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com