【題目】已知拋物線(xiàn)上一點(diǎn)到焦點(diǎn)F的距離,傾斜角為α的直線(xiàn)經(jīng)過(guò)焦點(diǎn)F,且與拋物線(xiàn)交于兩點(diǎn)AB。

(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程及準(zhǔn)線(xiàn)方程;

(2)α為銳角,作線(xiàn)段AB的中垂線(xiàn)mx軸于點(diǎn)P。證明:。

【答案】(1)拋物線(xiàn)的方程為,準(zhǔn)線(xiàn)方程為(2)見(jiàn)解析

【解析】

1)根據(jù)拋物線(xiàn)的定義,求得,由此求得點(diǎn)坐標(biāo),將其代入拋物線(xiàn)方程,解方程求得的值,進(jìn)而求得拋物線(xiàn)方程及其準(zhǔn)線(xiàn)方程;(2)設(shè)出直線(xiàn)的方程,聯(lián)立直線(xiàn)方程和拋物線(xiàn)方程,寫(xiě)出韋達(dá)定理,由此求得線(xiàn)段中點(diǎn)坐標(biāo),進(jìn)而求得線(xiàn)段中垂線(xiàn)方程,由此求得點(diǎn)坐標(biāo),求出,由此計(jì)算出.

解:(1)由拋物線(xiàn)的定義知,

將點(diǎn)代入,得.

拋物線(xiàn)的方程為,準(zhǔn)線(xiàn)方程為

2)證:設(shè)直線(xiàn)AB與直線(xiàn)m的交點(diǎn)為C..直線(xiàn)

,消去x得:

設(shè)線(xiàn)段AB中垂線(xiàn)m的方程為:

,得:,則點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢(qián),一片心,誠(chéng)信用水”活動(dòng),學(xué)生在購(gòu)水處每領(lǐng)取一瓶礦泉水,便自覺(jué)向捐款箱中至少投入一元錢(qián),現(xiàn)統(tǒng)計(jì)了連續(xù)天的售出和收益情況,如下表:

售出水量(單位:箱)

收益(單位:元)

(1)若每天售出箱水,求預(yù)計(jì)收益是多少元?

(2)期中考試以后,學(xué)校決定將誠(chéng)信用水的收益,以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生考入年級(jí)前名,獲一等獎(jiǎng)學(xué)金元;考入年級(jí)前名,獲二等獎(jiǎng)學(xué)金元;考入年級(jí)名以后的特困生不獲得獎(jiǎng)學(xué)金。甲、乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,不獲得獎(jiǎng)學(xué)金的概率均為.

①在學(xué)生甲獲得獎(jiǎng)學(xué)金的條件下,求他獲得一等獎(jiǎng)學(xué)金的概率;

②已知甲、乙兩名學(xué)生獲得哪個(gè)等第的獎(jiǎng)學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金總金額的分布列及數(shù)學(xué)期望

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20181024日,世界上最長(zhǎng)的跨海大橋一港珠澳大橋正式通車(chē)在一般情況下,大橋上的車(chē)流速度單位:千米時(shí)是車(chē)流密度單位:輛千米的函數(shù)當(dāng)橋上的車(chē)流密度達(dá)到220千米時(shí),將造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20千米時(shí),車(chē)流速度為100千米時(shí),研究表明:當(dāng)時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).

當(dāng)時(shí),求函數(shù)的表達(dá)式;

當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛時(shí)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查中學(xué)生每天玩游戲的時(shí)間是否與性別有關(guān),隨機(jī)抽取了男、女學(xué)生各50人進(jìn)行調(diào)查,根據(jù)其日均玩游戲的時(shí)間繪制了如下的頻率分布直方圖.

1)求所調(diào)查學(xué)生日均玩游戲時(shí)間在分鐘的人數(shù);

2)將日均玩游戲時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“游戲迷”,已知“游戲迷”中女生有6;根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“游戲迷”和性別關(guān)系;

非游戲迷

游戲迷

合計(jì)

合計(jì)

:(其中為樣本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足,則稱(chēng)局部奇函數(shù)。為定義在上的局部奇函數(shù);q:曲線(xiàn)x軸交于不同的兩點(diǎn)。

(1)當(dāng)p為真時(shí),求m的取值范圍.

(2)為真命題,且為假命題,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表表示的是某款車(chē)的車(chē)速與剎車(chē)距離的關(guān)系,試分別就,三種函數(shù)關(guān)系建立數(shù)學(xué)模型,并探討最佳模擬,根據(jù)最佳模擬求車(chē)速為120km/h時(shí)的剎車(chē)距離.

車(chē)速/km/h

10

15

30

40

50

剎車(chē)距離/m

4

7

12

18

25

車(chē)速/((km/h

60

70

80

90

100

剎車(chē)距離/m

34

43

54

66

80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(Ⅰ)寫(xiě)出直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)若點(diǎn)的直角坐標(biāo)為,曲線(xiàn)與直線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(常數(shù))滿(mǎn)足.

1)求的值,并對(duì)常數(shù)的不同取值討論函數(shù)奇偶性;

2)若在區(qū)間上單調(diào)遞減,求的最小值.

3)若方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿(mǎn)足對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案