設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關(guān)于的方程f(x)=a在區(qū)間上有三個(gè)根,求a的取值范圍.
(1) f(x)的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;當(dāng)時(shí)f(x)有極大值,當(dāng)x=2時(shí), f(x)有極小值-8.
(2)
解析試題分析:(1)首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與單調(diào)區(qū)間的關(guān)系確定函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)單調(diào)性即可求得函數(shù)極值;
(2)關(guān)于的方程f(x)=a在區(qū)間上有三個(gè)根,即函數(shù)y=a與y=f(x)的圖象在區(qū)間上有三個(gè)交點(diǎn),只需要函數(shù)y=" f(x)" 和函數(shù)y="a" 的圖像有兩個(gè)交點(diǎn).根據(jù)函數(shù)單調(diào)性變化情況,可求得實(shí)數(shù)a的值.
(1) ,由得 (2分)
由上表得, f(x)的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;x 2 f’(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗
當(dāng)時(shí)f(x)有極大值,當(dāng)x=2時(shí), f(x)有極小值-8. (6分)
(2)由題知,只需要函數(shù)y=" f(x)" 和函數(shù)y="a" 的圖像有兩個(gè)交點(diǎn). (7分)
,所以
由(1)知f(x)在,當(dāng)上單調(diào)遞減, 上單調(diào)遞增,在在上單調(diào)遞減. (10分)
∴當(dāng) 時(shí), y=" f(x)" 和y="a" 的圖像有兩個(gè)交點(diǎn).即方程f(x)=a在區(qū)間上有三個(gè)根. (12分)
考點(diǎn):函數(shù)的單調(diào)區(qū)間和極值;函數(shù)圖像的交點(diǎn)與方程的根的對(duì)應(yīng)關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-ax(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)在區(qū)間(0,+)上為增函數(shù),求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是函數(shù)的一個(gè)極值點(diǎn),其中.
(1)與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)處的切線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為常數(shù),且,函數(shù),
(是自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),是否同時(shí)存在實(shí)數(shù)和(),使得對(duì)每一個(gè),直線與曲線都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)和最大的實(shí)數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,( a為常數(shù),e為自然對(duì)數(shù)的底).
(1)
(2)時(shí)取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)的極大值構(gòu)成的函數(shù),將a換元為x,試判斷是否能與(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com