5.空間直角坐標(biāo)系中,已知A(2,3,-1),B(2,6,2),C(1,4,-1),則直線AB與AC的夾角為60°.

分析 根據(jù)空間向量的坐標(biāo)表示,得出$\overrightarrow{AB}$、$\overrightarrow{AC}$的坐標(biāo),利用向量的夾角公式求出向量$\overrightarrow{AB}$、$\overrightarrow{AC}$的夾角即可.

解答 解:空間直角坐標(biāo)系中,A(2,3,-1),B(2,6,2),C(1,4,-1),
∴$\overrightarrow{AB}$=(0,3,3),$\overrightarrow{AC}$=(-1,1,0),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=0×(-1)+3×1+3×0=3,
|$\overrightarrow{AB}$|=$\sqrt{{0}^{2}{+3}^{2}{+3}^{2}}$=3$\sqrt{2}$,
|$\overrightarrow{AC}$|=$\sqrt{{(-1)}^{2}{+1}^{2}{+0}^{2}}$=$\sqrt{2}$,
∴cos<$\overrightarrow{AB}$,$\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|×|\overrightarrow{AC}|}$=$\frac{3}{3\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$,
∴向量$\overrightarrow{AB}$、$\overrightarrow{AC}$的夾角為60°,
即直線AB與AC的夾角為60°.
故答案為:60°.

點(diǎn)評(píng) 本題考查了空間向量的坐標(biāo)表示與夾角公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x2-2x-3|,g(x)=x+a.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;(只需寫出結(jié)論即可)
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若h(x)在區(qū)間(-1,3)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若存在實(shí)數(shù)m∈[2,5],使得對(duì)于任意的x1∈[0,2],x2∈[-2,-1],都有f(x1)-m≥g(2${\;}^{{x}_{2}}$)-5成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn,且滿足Sn+Sn+1=3n2+2n,若對(duì)?n∈N+,an<an+1恒成立,則m的取值范圍是(-2,$\frac{5}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,圓(x+2)2+y2=4的圓心為點(diǎn)B,A(2,0),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線BP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從點(diǎn)A(2,-1,7)沿向量$\overrightarrow{a}$=(8,9,-12)的方向取線段長(zhǎng)|AB|=34,則B點(diǎn)的坐標(biāo)為( 。
A.(18,17,-17)B.(-14,-19,17)C.$({6,\frac{7}{2},1})$D.$({-2,-\frac{11}{2},13})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x|-2≤x≤3},B={x∈Z|x2-5x<0},則A∩B=( 。
A.{1,2}B.{2,3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在[0,10]時(shí)為一等品,在[10,20]為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.方程2sinπx-lgx2=0實(shí)數(shù)解的個(gè)數(shù)是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足:2cosC(acosB+bcosA)=c.
(1)求C;
(2)若a=2,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案