分析 (1)由正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知等式可得2cosCsinC=sinC,結(jié)合范圍C∈(0,π),sinC≠0,可求cosC=$\frac{1}{2}$,即可得解C的值.
(2)由已知利用三角形面積公式可求b,進(jìn)而利用余弦定理可求c,即可得解三角形的周長(zhǎng).
解答 (本題滿分為10分)
解:(1)∵2cosC(acosB+bcosA)=c.
∴由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC.
整理可得:2cosCsinC=sinC,
∵C∈(0,π),sinC≠0,
∴解得:cosC=$\frac{1}{2}$,C=$\frac{π}{3}$.
(2)∵a=2,△ABC的面積為$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}$absinC=$\frac{1}{2}×2×b×sin\frac{π}{3}$,
∴解得:b=3,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{{2}^{2}+{3}^{2}-2×2×3×\frac{1}{2}}$=$\sqrt{7}$,
∴△ABC的周長(zhǎng)l=a+b+c=5+$\sqrt{7}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 與點(diǎn)P的位置有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=8y | B. | y2=-8x | C. | y2=8x | D. | x2=-8y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 3 | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{20}$ | B. | $\frac{7}{10}$ | C. | $\frac{5}{8}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com