4.若二次函數(shù)f(x)的頂點(diǎn)為A(1,16),其圖象在x軸上截得的線段長為8,則f(x)=0的兩根為5或-3.

分析 根據(jù)其頂點(diǎn)坐標(biāo)用頂點(diǎn)式二次函數(shù)通式設(shè)拋物線的解析式,然后根據(jù)圖象在x軸上截得線段長是8,求得圖象與x軸交于(-3,0)和(5,0)兩點(diǎn),代入拋物線中,求得二次函數(shù)的解析式,即可求出f(x)=0的兩根.

解答 解:∵二次函數(shù)f(x)的圖象頂點(diǎn)為A(1,16),
∴設(shè)二次函數(shù)解析式為f(x)=a(x-1)2+16.
又∵圖象在x軸上截得線段長是8,
∴圖象與x軸交于(-3,0)和(5,0)兩點(diǎn).
∴a(-3-1)2+16=0,
∴a=-1,
∴所求二次函數(shù)解析式為f(x)=-x2+2x+15,
令-x2+2x+15=0,可得(x-5)(x+3)=0,∴x=5或-3.
故答案為:5或-3.

點(diǎn)評 本題重點(diǎn)考查函數(shù)的解析式,考查求方程的根,解題的關(guān)鍵是利用待定系數(shù)法求出方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)直線l:y=kx+$\sqrt{3}$(k>0)交圓O:x2+y2=1于A,B兩點(diǎn),當(dāng)△OAB面積最大時,k=( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.今天為星期四,則今天后的第22016天是(  )
A.星期 二B.星期三C.星期四D.星期五

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2lnx-a(x2-1),a∈R,若當(dāng)x≥1時,f(x)≥0恒成立,則a的取值范圍是(  )
A.(-∞,-1]B.(-∞,0]C.(-∞,1]D.$(-∞,\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.集合A={x|x2+2x-3=0,x∈R},B={x|kx+1=0,x∈R},則B?A的一個充分非必要條件是k=-1(或k=$\frac{1}{3}$或k=0)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x-5|+|x+4|.
(Ⅰ)求不等式f(x)≥12的解集;
(Ⅱ)若關(guān)于x的不等式f(x)-21-3a-1≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=$\frac{x+3}$+$\frac{x+a}$為奇函數(shù),常數(shù)b≠0,則常數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)P(1,1)在矩陣$M=[{\begin{array}{l}1&a\\ b&4\end{array}}]$對應(yīng)的變換下得到點(diǎn)Q(3,7),求M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=lnx-x-mx在區(qū)間[1,e2]內(nèi)有唯一的零點(diǎn),則實(shí)數(shù)m的取值范圍是[-1,$\frac{2}{{e}^{2}}$-1)∪{$\frac{1}{e}$-1}.

查看答案和解析>>

同步練習(xí)冊答案