3.如圖,過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>1)上頂點和右頂點分別作圓x2+y2=1的兩條切線的斜率之積為-$\frac{{\sqrt{2}}}{2}$,則橢圓的離心率的取值范圍是$({0,\frac{{\sqrt{2}}}{2}})$.

分析 由題意設(shè)出兩切線方程,由點到直線的距離公式可得a與k,b與k的關(guān)系,代入橢圓離心率可得e與k的關(guān)系,求出函數(shù)值域得答案.

解答 解:由題意設(shè)兩條切線分別為:y=kx+b,y=-$\frac{\sqrt{2}}{2k}$(x-a)(k≠0),
由圓心到兩直線的距離均為半徑得:
$\frac{\sqrt{{k}^{2}+1}}=1$,$\frac{\sqrt{2}a}{\sqrt{4{k}^{2}+2}}=1$,
化簡得:b2=k2+1,a2=2k2+1.
∴$e=\frac{c}{a}=\sqrt{\frac{{c}^{2}}{{a}^{2}}}=\sqrt{\frac{{a}^{2}-^{2}}{{a}^{2}}}=\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{{k}^{2}+1}{2{k}^{2}+1}}$
=$\sqrt{\frac{1}{2+\frac{1}{{k}^{2}}}}$(k≠0).
∴0<e<$\frac{\sqrt{2}}{2}$.
故答案為:$({0,\frac{{\sqrt{2}}}{2}})$.

點評 本題考查橢圓的簡單性質(zhì),考查了點到直線距離公式的應(yīng)用,訓(xùn)練了函數(shù)值域的求法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-3≥0\\ 2x+y-6≤0\end{array}\right.$,若2x-y≥m恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x+alnx與g(x)=3-$\frac{x}$的圖象在點(1,1)處有相同的切線.
(1)若函數(shù)y=2(x+m)與y=f(x)的圖象有兩個交點,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)F(x)=3(x-$\frac{m}{2}$)+$\frac{m}{2}$g(x)-2f(x)有兩個極值點x1,x2,且x1<x2,求證:F(x2)<x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若六棱柱ABCDEF-A1B1C1D1E1F1的底面是邊長為1的正六邊形,側(cè)棱AA1⊥底面ABCDEF,且$A{A_1}=\sqrt{6}$,則異面直線EF與BD1所成的角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥m\end{array}\right.$如果目標函數(shù)z=y-x的最小值為-2,則實數(shù)m等于( 。
A.0B.-2C.-4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{1}{2}$x-sinx,則f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要得到函數(shù)y=sin2x的圖象,只要將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{6}$單位即可B.向右平移$\frac{π}{6}$單位即可
C.向右平移$\frac{π}{3}$單位即可D.向左平移$\frac{π}{3}$單位即可

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實數(shù)a,b滿足2a=3,3b=2,則函數(shù)f(x)=ax+x-b的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某單位有老人20人,中年人120人,青年人100人,現(xiàn)采用分層抽樣的方法從所有人中抽取一個容量為n的樣本,已知青年人抽取的人數(shù)為10人,則n=24.

查看答案和解析>>

同步練習冊答案