A. | 0 | B. | -2 | C. | -4 | D. | 1 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數z=y-x的最小值是-2,確定m的取值.
解答 解:作出不等式組對應的平面區(qū)域如圖:
由目標函數z=y-x的最小值是-2,得y=x+z,
如圖所示當直線y=x+z過點A時,z最小,
由$\left\{\begin{array}{l}{y=2x-1}\\{x+y=m}\end{array}\right.$得A($\frac{m+1}{3}$,$\frac{2m-1}{3}$)
代入z=y-x=$\frac{m-2}{3}=-2$⇒m=-4
故選:C.
點評 本題主要考查線性規(guī)劃的應用,根據條件求出m的值是解決本題的關鍵,利用數形結合是解決此類問題的基本方法.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 0或-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<2或x>3} | B. | {x|x<-1或x>3} | C. | {x|x<-1或x>$\frac{3}{2}\}$ | D. | {x|x<1或x>$\frac{3}{2}\}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,-1) | B. | [-2,4) | C. | [-2,-1) | D. | ∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<1} | B. | {x|-1≤x<1} | C. | {x|-1≤x≤1} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com