15.要得到函數(shù)y=2sin(2x+$\frac{π}{5}$)的圖象,應(yīng)該把函數(shù)y=cos(x-$\frac{2}{15}$π)-$\sqrt{3}$sin(x-$\frac{2π}{15}$)的圖象做如下變換( 。
A.將圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變
B.沿x向左平移$\frac{π}{2}$個(gè)單位,再把得圖象上的每一點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2而縱坐標(biāo)不變
C.先把圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向右平移$\frac{π}{4}$個(gè)單位
D.先把圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向左平移$\frac{π}{2}$個(gè)單位

分析 利用三角函數(shù)的恒等變換化簡(jiǎn)函數(shù)的解析式,再來一用誘導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=cos(x-$\frac{2}{15}$π)-$\sqrt{3}$sin(x-$\frac{2π}{15}$)=2cos[(x-$\frac{2π}{15}$)+$\frac{π}{3}$]=2cos(x+$\frac{π}{5}$)=2sin($\frac{π}{2}$+x+$\frac{π}{5}$)=2sin(x+$\frac{7π}{10}$)的圖象,
先把圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,可得y=2sin(2x+$\frac{7π}{10}$)的圖象,
再將所得圖象沿x向右平移$\frac{π}{4}$個(gè)單位,可得y=2sin(2x-$\frac{π}{2}$+$\frac{7π}{10}$)=2sin(2x+$\frac{π}{5}$)的圖象,
故選:C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換,誘導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:f(α)=$\frac{sin(4π-α)cos(π-α)cos(\frac{3π}{2}+α)cos(\frac{7π}{2}-α)}{cos(π+α)sin(2π-α)sin(π+α)sin(\frac{9π}{2}-α)}$
(1)化簡(jiǎn) f(α)          
(2)求f(-$\frac{31}{6}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知對(duì)k∈R,直線y-kx-1=0與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍( 。
A.(1,4]B.[1,4)C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是(  )
A.集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分不必要條件
B.命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”
C.“|a|>|b|”是“a2>b2”的必要不充分條件
D.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是奇數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sinαcosβ=1,則cos(α+β)的值是( 。
A.0B.1C.-1D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π).
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ) 請(qǐng)寫出函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=3,an+1=an2+2an,n∈N*,設(shè)bn=log2(an+1).
(I)求{an}的通項(xiàng)公式;
(II)求證:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{_{n}-1}$<n(n≥2);
(III)若${2^{c_n}}$=bn,求證:2≤${(\frac{{{c_{n+1}}}}{c_n})^n}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn;
(3)求滿足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列{an}中,已知a7=-8,a17=-28.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)求Sn的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案