14.若三個(gè)非零實(shí)數(shù):x(y-z)、y(z-x)、z(y-x)成等比數(shù)列,則其公比q=$\frac{{1±\sqrt{5}}}{2}$.

分析 由$\frac{y(z-x)}{x(y-z)}$=$\frac{z(y-x)}{y(z-x)}$,得$\frac{yz-yx}{xy-xz}$=1+$\frac{xy-xz}{yz-xy}$,由此能求出公比q.

解答 解:∵三個(gè)非零實(shí)數(shù):x(y-z)、y(z-x)、z(y-x)成等比數(shù)列,
∴$\frac{y(z-x)}{x(y-z)}$=$\frac{z(y-x)}{y(z-x)}$,即$\frac{yz-yx}{xy-xz}$=$\frac{yz-xz}{yz-xy}$,
又$\frac{yz-xz}{yz-xy}$=$\frac{yz-xy+xy-xz}{yz-xy}$=1+$\frac{xy-xz}{yz-xy}$,
$\frac{yz-yx}{xy-xz}$=1+$\frac{xy-xz}{yz-xy}$,
設(shè)$\frac{yz-yx}{xy-xz}$=q,則q=1+$\frac{1}{q}$,
解得:q=$\frac{1±\sqrt{5}}{2}$.
故答案為:$\frac{{1±\sqrt{5}}}{2}$.

點(diǎn)評(píng) 本題考查等比數(shù)列中項(xiàng)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)y=f(x)的圖象與y=2x-a的圖象關(guān)于直線y=-x對(duì)稱,且f(-2)+f(-4)=1,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.拋擲兩枚質(zhì)地均勻的正四面體骰子,其4個(gè)面分別標(biāo)有數(shù)字1,2,3,4,記每次拋擲朝下一面的數(shù)字中較大者為a(若兩數(shù)相等,則取該數(shù)),平均數(shù)為b,則事件“a-b=1”發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)滿足f(x)=f(-x),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf'(x)<0成立,若a=(20.6)•f(20.6),b=(ln2)•f(ln2),c=(${{{log}_2}\frac{1}{8}}$)•f(${{{log}_2}\frac{1}{8}}$),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=CD=SD=AD=2AB=2,M,N分別為SA,SB的中點(diǎn),E為CD的中點(diǎn),過(guò)M,N作平面MNPQ分別與交BC,AD于點(diǎn)P,Q.
(Ⅰ)當(dāng)Q為AD中點(diǎn)時(shí),求證:平面SAE⊥平面MNPQ;
(Ⅱ)當(dāng)$\overrightarrow{AQ}=3\overrightarrow{QD}$時(shí),求三棱錐Q-BCN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=x(ex-1)-ax2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(1)若$a=\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(-1,0)內(nèi)無(wú)極值,求a的取值范圍;
(3)設(shè)n∈N*,x>0,求證:${e^x}>1+\frac{x}{1!}+\frac{x^2}{2!}+…+\frac{x^n}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B為菱形,底面△ABC是等腰直角三角形,∠BAC=90°,A1B⊥B1C.
(1)求證:直線AC⊥直線BB1;
(2)若直線BB1與底面ABC成的角為60°,求二面角A-BB1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列結(jié)論中正確的個(gè)數(shù)是( 。
①若a>b,則am2>bm2;
②在線性回歸分析中,相關(guān)系數(shù)r越大,變量間的相關(guān)性越強(qiáng);
③已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④已知l,m為兩條不同直線,α,β為兩個(gè)不同平面,若α∩β=l,m∥α,m∥β,則m∥l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則ω的最小值是( 。
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案