【題目】已知函數(shù),.
(1)若函數(shù)恰有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng),且時(shí),證明:.(常數(shù)是自然對(duì)數(shù)的底數(shù)).
【答案】(1)(2)證明見解析
【解析】
1,等價(jià)于方程在恰有一個(gè)變號(hào)零點(diǎn).
即在恰有一個(gè)變號(hào)零點(diǎn).令,利用函數(shù)圖象即可求解.
2要證明:只需證明,即證明要證明,即證明利用導(dǎo)數(shù)即可證明.
Ⅰ,,
,
函數(shù)恰有一個(gè)極值點(diǎn),
方程在恰有一個(gè)變號(hào)零點(diǎn).
在恰有一個(gè)變號(hào)零點(diǎn).
令,則.
可得時(shí),,函數(shù)單調(diào)遞增,
時(shí),,函數(shù)單調(diào)遞減.
函數(shù)草圖如下,
可得,
.
實(shí)數(shù)a的取值范圍為:
2要證明:證明.
證明,即證明.
令則,
時(shí),,函數(shù)遞增,時(shí),,遞減.
,即原不等式成立.
要證明,即證明.
,
故只需證明即可.
令,則.
時(shí),,函數(shù)遞減,時(shí),,函數(shù)遞增.
,
又,
故原不等式成立.
綜上,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙十一購物狂歡節(jié),源于淘寶商城(天貓)年月日舉辦的網(wǎng)絡(luò)促銷活動(dòng),目前已成為中國電子商務(wù)行業(yè)的年度盛事,某商家為了解“雙十一”這一天網(wǎng)購者在其網(wǎng)店一次性購物情況,從這一天交易成功的所有訂單里隨機(jī)抽取了份,按購物金額(單位:元)進(jìn)行統(tǒng)計(jì),得到如下頻率分布直方圖(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表計(jì)算).
(1)求的值;
(2)試估計(jì)購物金額的平均數(shù);
(3)若該商家制訂了兩種不同的促銷方案:
方案一:全場商品打八折;
方案二:全場商品優(yōu)惠如下表:
購物金額范圍 | ||||||
商家優(yōu)惠(元) |
如果你是購物者,你認(rèn)為哪種方案優(yōu)惠力度更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>R,且對(duì)于任意x∈R,都有及成立,當(dāng)且時(shí),都有成立,下列四個(gè)結(jié)論中不正確命題是( )
A.B.函數(shù)在區(qū)間上為增函數(shù)
C.直線是函數(shù)的一條對(duì)稱軸D.方程在區(qū)間上有4個(gè)不同的實(shí)根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點(diǎn),為坐標(biāo)原點(diǎn),關(guān)于的對(duì)稱點(diǎn)為,,圓:.
(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作與圓相切于點(diǎn),使得點(diǎn),點(diǎn)在的兩側(cè).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,則平面PQC與平面DCQ的位置關(guān)系為( )
A. 平行 B. 垂直
C. 相交但不垂直 D. 位置關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其圖象關(guān)于直線對(duì)稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)( )
A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變
B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變
C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變
D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com