4.比較大。簊in$\frac{π}{5}$<cos$\frac{π}{5}$(用“<”或“>”連接).

分析 cos$\frac{π}{5}$=sin$\frac{3π}{10}$,利用正弦函數(shù)單調(diào)性比較即可.

解答 解:cos$\frac{π}{5}$=sin$\frac{3π}{10}$,
∵y=sinx在(0,$\frac{π}{2}$)上是增函數(shù),
∴sin$\frac{π}{5}$<sin$\frac{3π}{10}$.
即sin$\frac{π}{5}$<$\frac{π}{5}$.
故答案為<.

點評 本題考查了三角函數(shù)的單調(diào)性,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知棱長為1的正方體ABCD-A1B1C1D1中,M是棱CC1的中點,則三棱錐A1-ABM的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知實數(shù)c>0,設(shè)命題p:函數(shù)y=(2c-1)x在R上單調(diào)遞減;命題q:不等式x+|x-2c|>1的解集為R,如果p∨q為真,p∧q為假,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知直線l:$\sqrt{3}x-y+4=0$與圓x2+y2=16交于A,B兩點,則$\overrightarrow{AB}$在x軸正方向上投影的絕對值為( 。
A.$4\sqrt{3}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當$m≥\frac{{3\sqrt{2}}}{2}$時,設(shè)g(x)=2f(x)+x2的兩個極值點x1,x2,(x1<x2)恰為h(x)=lnx-cx2-bx的零點,求$y=({x_1}-{x_2}){h^'}(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=ax-4+1圖象恒過定點P,且P在冪函數(shù)y=f(x)圖象上,則f(16)=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知實數(shù)a為常數(shù),U=R,設(shè)集合A={x|$\frac{x-3}{x+1}$>0},B={x|y=$\sqrt{lo{g}_{2}x-1}$},C={x|x2-(4+a)x+4a≤0}.
(1)求A∩B;
(2)若∁UA⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m過圓C1圓心,且被圓C2截得的弦長是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知2a=3,則a=log23.

查看答案和解析>>

同步練習冊答案