分析 (1)先解不等式,再利用不等式f(x)≤2的解集為單元素集,求實數(shù)m的值;
(2)存在x0∈R,使得f(x0)+f(-x0)≤a成立,則|x0-1|+2+|-x0-1|+2≤a,即|x0-1|+|-x0-1|≤a-4,求出左邊的最小值,即可求實數(shù)a的取值范圍.
解答 解:(1)由題意|x-m|≤2-2m,
∴3m-2≤x≤2-m,
∵不等式f(x)≤2的解集為單元素集,
∴3m-2=2-m,
∴m=1;
(2)f(x)=|x-1|+2,
存在x0∈R,使得f(x0)+f(-x0)≤a成立,則|x0-1|+2+|-x0-1|+2≤a,
∴|x0-1|+|-x0-1|≤a-4,
∵|x0-1|+|-x0-1|≥|x0-1-x0-1|=2,
∴a-4≥2,
∴a≥6.
點評 本題考查絕對值不等式,考查學生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com