8.已知f(x)=|x-1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式$f(x)≥\frac{2}{9}({a^2}+\frac{a}{2}+9)$成立,求實數(shù)a的取值范圍.

分析 (1)通過討論x的范圍,得到各個區(qū)間上的x的范圍,取并集即可;(2)求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.

解答 解:(1)由f(x)≤x+2,
得$\left\{\begin{array}{l}x+2≥0\\ x≤-1\\ 1-x-x-1≤x+2\end{array}\right.$或$\left\{\begin{array}{l}x+2≥0\\-1<x<1\\ 1-x+x+1≤x+2\end{array}\right.$或$\left\{\begin{array}{l}x+2≥0\\ x≥1\\ x-1+x+1≤x+2\end{array}\right.$,
解之得0≤x≤2,
∴f(x)≤x+2的解集為{x|0≤x≤2}.
(2)由題可得,f(x)min≥$\frac{2}{9}$(a2+$\frac{a}{2}$+9),
而f(x)=$\left\{\begin{array}{l}{2x,x≥1}\\{2,-1<x<1}\\{-2x,x≤-1}\end{array}\right.$,
∵f(x)min=2,
∴$9≥{a^2}+\frac{a}{2}+9$,
∴$a∈[{-\frac{1}{2},0}]$.

點評 本題考查了解絕對值不等式問題,考查分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,a6+3a8=8,則a5+a10=( 。
A.16B.12C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≤2}\\{y-z≤2}\\{y≥1}\end{array}\right.$,則(x+2)2+(y-3)2的最大值和最小值之和為( 。
A.$\frac{19}{2}$B.$\frac{35}{2}$C.14D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.$\overrightarrow a=(\sqrt{3}sin2x,cos2x),\overrightarrow b=(cos2x,-cos2x),f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$.
(1)若$x∈(\frac{7}{24}π,\frac{5}{12}π)$時,$\overrightarrow a•\overrightarrow b+\frac{1}{2}=-\frac{3}{5}$,求cos4x的值;
(2)將$f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$的圖象向左移$\frac{π}{8}$,再將各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得y=g(x),若關(guān)于g(x)+m=0在區(qū)間$[0,\frac{π}{2}]$上的有且只有一個實數(shù)解,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.位于直角坐標(biāo)原點的質(zhì)點P按一下規(guī)則移動:①每次移動一個單位②向左移動的概率為$\frac{1}{4}$,向右移動的概率為$\frac{3}{4}$.移動5次后落在點(-1,0)的概率為( 。
A.C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2B.C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3C.C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2D.C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x<5,x∈N},B={x|(x-2)(x-7)≤0},集合M=A∩B,則M的子集個數(shù)為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解甲、乙兩校高三年級學(xué)生某次期末聯(lián)考地理成績情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若乙校高三年級每位學(xué)生被抽取的概率為0.15,求乙校高三年級學(xué)生總?cè)藬?shù);
(2)根據(jù)莖葉圖,分析甲、乙兩校高三年級學(xué)生在這次聯(lián)考中哪個學(xué)校地理成績較好?(不要求計算,要求寫出理由);
(3)從樣本中甲、乙兩校高三年級學(xué)生地理成績不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列求導(dǎo)運算正確的是(  )
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$
C.(5x)′=5xlog5eD.(sin α)′=cos α(α為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,D是邊BC的中點,|$\overrightarrow{AC}$|=3,|$\overrightarrow{AB}$|=2,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案