【題目】在平面直角坐標(biāo)系中,曲線是由到兩個定點和點的距離之積等于的所有點組成的.對于曲線,有下列四個結(jié)論:

①曲線是軸對稱圖形;

②曲線是中心對稱圖形;

③曲線上所有的點都在單位圓內(nèi);

其中,所有正確結(jié)論的序號是__________

【答案】①②

【解析】

由題意曲線是平面內(nèi)與兩個定點的距離的積等于常數(shù),設(shè)動點坐標(biāo)為,得到動點的軌跡方程,然后由方程特點即可加以判斷.

由題意,設(shè)動點坐標(biāo)為,利用題意及兩點間的距離公式的得:

對于,分別將方程中的被﹣代換不變,被﹣ 代換不變,方程都不變,故關(guān)于軸對稱和軸對稱,故曲線是軸對稱圖形,故正確

對于,把方程中的被﹣代換且被﹣代換,方程不變,故此曲線關(guān)于原點對稱,曲線是中心對稱圖形,故正確;

對于③,令0可得,,即2=1+,此時對應(yīng)的點不在單位圓2+2=1內(nèi),故錯誤.

故答案為:①②

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺ABCA1B1C1中,D,E分別是AB,AC的中點,AB=2A1B1,B1E⊥平面ABC,且ACB=90°.

(Ⅰ)求證:B1C∥平面A1DE

(Ⅱ)AC=3BC=6,△AB1C為等邊三角形,求四棱錐A1B1C1ED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游區(qū)每年各個月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而,第個月從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫,其中,正整數(shù)表示月份,為正整數(shù),.

統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:

(i)每年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;

(ii)該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;

(iii)2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.

(1)根據(jù)已知信息,試確定一個符合條件的的表達(dá)式.

(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)在400400以上時,該地區(qū)也進(jìn)入了一年中的旅游旺季”.求一年中的哪幾個月是該地區(qū)的旅游旺季?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于兩點,的最大值為,的最小值為,滿足.

(1)若線段垂直于軸時,,求橢圓的方程;

(2)設(shè)線段的中點為,的垂直平分線與軸和軸分別交于兩點,是坐標(biāo)原點,記的面積為,的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,雙曲線上有兩點滿足,且點到直線的距離為,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列命題:

為偶函數(shù);的最大值為2;

內(nèi)的零點個數(shù)為18

的任何一個極大值都大于1

其中所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}{bn}是兩個等差數(shù)列,cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xss個數(shù)中最大的數(shù).

()an=n,bn=2n-1,c1,c2,c3的值,并證明{cn}是等差數(shù)列;

()證明:或者對任意正數(shù)M,存在正整數(shù)m,當(dāng)nm, >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為圓上一動點,軸于點,記線段的中點的運動軌跡為曲線.

1)求曲線的方程;

2)直線經(jīng)過定點,且與曲線交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某街道居委會擬在地段的居民樓正南方向的空白地段上建一個活動中心,其中米.活動中心東西走向,與居民樓平行. 從東向西看活動中心的截面圖的下部分是長方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長不超過米,其中該太陽光線與水平線的夾角滿足.

1)若設(shè)計米,米,問能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計的長度,可使得活動中心的截面面積最大?(注:計算中3

查看答案和解析>>

同步練習(xí)冊答案