【題目】已知B島在A島正東方向距離12km處,C島在A島北偏東方向相離8km處.某船從A島出發(fā)向B島駛?cè),并在與B,C距離相等處待命.

(1)求此船航行的距離(精確到0.1km).

(2)若此船在待命處接到命令,以最少的時(shí)間行駛到C島,則此船應(yīng)沿什么方向行駛?

【答案】(1) 7.9km (2) 北偏西方向

【解析】

根據(jù)題意作出示意圖,設(shè)此船向島方向行駛到處時(shí),.設(shè),則有

1)在中,利用余弦定理,即可解得此船航行的距離,

2)結(jié)合(1)的結(jié)論,在中,利用余弦定理,求得,從而得到船行駛的方向.

作出示意圖,如圖所示.

設(shè)此船向島方向行駛到處時(shí),.設(shè),

則有

(1)在中,,,

由余弦定理,得,解得,

,即此船從島到待命處應(yīng)該航行的距離約為

(2)由余弦定理,得

,即船應(yīng)沿北偏西方向全速行駛就可盡快到達(dá)島.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖如下.

組號

分組

頻數(shù)

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合計(jì)

100

(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的頻率;

(2)求頻率分布直方圖中的a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一張半徑為3的圓形鐵皮中裁剪出一塊扇形鐵皮(如圖1陰影部分),并卷成一個(gè)深度為米的圓錐筒(如圖2.若所裁剪的扇形鐵皮的圓心角為.

1)求圓錐筒的容積;

2)在(1)中的圓錐內(nèi)有一個(gè)底面圓半徑為的內(nèi)接圓柱(如圖3),求內(nèi)接圓柱側(cè)面積最大時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動(dòng)直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中,依次是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且,公比

(1)求;

(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式.

(1)是否存在實(shí)數(shù)m,使不等式對任意恒成立?并說明理由.

(2)若不等式對任意恒成立,求實(shí)數(shù)m的取值范圍.

(3)若對于,不等式恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)P的坐標(biāo)為.

1)求橢圓M的方程;

2)設(shè)橢圓的右頂點(diǎn)為C,不經(jīng)過點(diǎn)C的直線l與橢圓M交于A,B兩點(diǎn),且以線段AB為直徑的圓過點(diǎn)C,

①證明:直線l過定點(diǎn),并求出該定點(diǎn)坐標(biāo);

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間,使得函數(shù)滿足以下兩個(gè)條件:(1[m,n]上是單調(diào)函數(shù);(2[m,n]上的值域?yàn)?/span>[2m,2n],則稱區(qū)間[m,n]的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( )個(gè).

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案