1.已知函數(shù)f(x)=ax(a>0,且a≠1),當(dāng)x<0時(shí),f(x)>1,方程y=ax+$\frac{1}{a}$表示的直線是(  )
A.B.C.D.

分析 判斷a的范圍,利用函數(shù)的圖象經(jīng)過的特殊點(diǎn),判斷求解即可.

解答 解:函數(shù)f(x)=ax(a>0,且a≠1),當(dāng)x<0時(shí),f(x)>1,
∴0<a<1,方程y=ax+$\frac{1}{a}$,
令x=0可得y=$\frac{1}{a}$,y=0可得x=-$\frac{1}{{a}^{2}}$,
∵-$\frac{1}{{a}^{2}}$>$\frac{1}{a}$,∴C選項(xiàng)正確.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的判斷,指數(shù)函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知橢圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cost+1}\\{y=4sint}\end{array}\right.$,(t為參數(shù)),點(diǎn)M在橢圓上,對(duì)應(yīng)的參數(shù)t=$\frac{π}{3}$,點(diǎn)O為原點(diǎn),則OM的傾斜角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.京劇是我國的國粹,是“國家級(jí)非物質(zhì)文化遺產(chǎn)”,某機(jī)構(gòu)在網(wǎng)絡(luò)上調(diào)查發(fā)現(xiàn)各地京劇票友的年齡ξ服從正態(tài)分布N(μ,σ2),同時(shí)隨機(jī)抽取100位參與某電視臺(tái)《我愛京劇》節(jié)目的票友的年齡作為樣本進(jìn)行分析研究(全部票友的年齡都在[30,80]內(nèi)),樣本數(shù)據(jù)分別區(qū)間為[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如圖所示的頻率分布直方圖.
(Ⅰ)  若P(ξ<38)=P(ξ>68),求a,b的值;
(Ⅱ)現(xiàn)從樣本年齡在[70,80]的票友中組織了一次有關(guān)京劇知識(shí)的問答,每人回答一個(gè)問題,答對(duì)贏得一臺(tái)老年戲曲演唱機(jī),答錯(cuò)沒有獎(jiǎng)品,假設(shè)每人答對(duì)的概率均為$\frac{2}{3}$,且每個(gè)人回答正確與否相互之間沒有影響,用η表示票友們贏得老年戲曲演唱機(jī)的臺(tái)數(shù),求η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)及對(duì)應(yīng)銷售價(jià)格y(單位:千元/噸).
x12345
y7065553822
(1)若y與x有較強(qiáng)的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若每噸該農(nóng)產(chǎn)品的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤Z最大?
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤2}\\{x+2≥0}\end{array}\right.$,則z=2x+y的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+lnx-mx(m>0)
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:曲線y=f(x)不存在經(jīng)過原點(diǎn)的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若xlog32=1,則2x+2-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x為實(shí)數(shù),則“$\frac{1}{x}<1$”是“x>1”的( 。
A.充分非必要條件B.充要條件
C.必要非充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.有下列命題:
①已知$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)兩個(gè)非零向量,則平面內(nèi)任一向量$\overrightarrow{c}$都可表示為λ$\overrightarrow{a}$+μ$\overrightarrow$,其中λ,μ∈R;
②對(duì)任意平面四邊形ABCD,點(diǎn)E、F分別為AB、CD的中點(diǎn),則$2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}$;
③直線x-y-2=0的一個(gè)方向向量為(1,-1);
④在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$則BC=$\sqrt{3}$;
其中正確的是②④(寫出所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案