A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{{\sqrt{15}}}{16}$ | D. | $\frac{1}{3}$ |
分析 取AB中點(diǎn)O,以O(shè)為原點(diǎn),過O作BC的平行線為x軸,OB為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AC與BE所成角的余弦值.
解答 解:取AB中點(diǎn)O,連結(jié)OD,
∵在三棱錐D-ABC中,∠ABC=90°,平面DAB⊥平面ABC,
DA=AB=DB=BC,
∴OD⊥平面ABC,
以O(shè)為原點(diǎn),過O作BC的平行線為x軸,OB為y軸,OD為z軸,
建立空間直角坐標(biāo)系,
設(shè)DA=AB=DB=BC=2,又E是DC的中點(diǎn),
∴A(0,-1,0),C(2,1,0),B(0,1,0),
D(0,0,$\sqrt{3}$),E(1,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
$\overrightarrow{AC}$=(2,2,0),$\overrightarrow{BE}$=(1,-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
設(shè)AC與BE所成角為θ,
則cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{BE}|}{|\overrightarrow{AC}|•|\overrightarrow{BE}|}$=$\frac{1}{2\sqrt{2}•\sqrt{2}}$=$\frac{1}{4}$.
∴AC與BE所成角的余弦值為$\frac{1}{4}$.
故選:B.
點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,考查空間想象能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 4 | C. | 9 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | ln 3 | C. | $\frac{1}{3ln3}$ | D. | $\frac{1}{ln3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-x2-1 | B. | $y=\frac{{{2^x}sinx}}{4x+1}$ | C. | $y=\frac{x}{lnx}$ | D. | y=(x2-2x)ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com