7.隨機變量X服從正態(tài)分布(3,σ2),且P(X≤4)=0.84,則P(2<X<4)=( 。
A.0.16B.0.32C.0.68D.0.84

分析 根據(jù)對稱性先求出P(X≤2),再得出P(2<X<4).

解答 解:P(X≤2)=P(X≥4)=1-0.84=0.16,
∴P(2<X<4)=P(X≤4)-P(X≤2)=0.84-0.16=0.68.
故選:C.

點評 本題考查了正態(tài)分布的特點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若a>0,b>0,且2a+b=1,則2$\sqrt{ab}$-4a2-b2的最大值是$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,Sn=2an-1,{bn}是等差數(shù)列,且b1=a1,b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若${c_n}=\frac{2}{a_n}-\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)$y=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的圖象沿x軸向左平移$\frac{π}{3}$個單位長度,得到函數(shù)$y=cos({2x+\frac{π}{4}})$的圖象,則φ=( 。
A.$\frac{π}{12}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標(biāo)準(zhǔn)(簡稱達標(biāo))的概率為p(0<p<1).經(jīng)化驗檢測,若確認(rèn)達標(biāo)便可直接排放;若不達標(biāo)則必須進行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個標(biāo)準(zhǔn)水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標(biāo),則混合樣本的化驗結(jié)果必不達標(biāo).若混合樣本不達標(biāo),則該組中各個樣本必須再逐個化驗;若混合樣本達標(biāo),則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若$p=\frac{2}{{\sqrt{5}}}$,求2個A級水樣本混合化驗結(jié)果不達標(biāo)的概率;
(Ⅱ) 若$p=\frac{2}{{\sqrt{5}}}$,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=cos(x+ϕ)(-π<ϕ<0),g(x)=f(x)+f'(x)是偶函數(shù).
(Ⅰ)求ϕ的值;
(Ⅱ)求函數(shù)y=f(x)•g(x)在區(qū)間$[{0,\frac{π}{2}}]$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于函數(shù)y=f(x),x∈D,若對于任意x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})({x_2})}$=M,則稱函數(shù)f(x)在D上的幾何平均數(shù)為M.那么函數(shù)f(x)=x3-x2+1,在x∈[1,2]上的幾何平均數(shù)M=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等差數(shù)列{an}中,a2=1,a5=6,則公差d等于(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊答案