【題目】設(shè)M,N為兩個隨機(jī)事件,給出以下命題: (1.)若M、N為互斥事件,且 , ,則 ;
(2.)若 , , ,則M、N為相互獨(dú)立事件;
(3.)若 , , ,則M、N為相互獨(dú)立事件;
(4.)若 , , ,則M、N為相互獨(dú)立事件;
(5.)若 , , ,則M、N為相互獨(dú)立事件;
其中正確命題的個數(shù)為( )
A.1
B.2
C.3
D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在一個邊長為1的正方形AOBC內(nèi),曲線y=x3(x>0)和曲線y= 圍成一個葉形圖(陰影部分),向正方形AOBC內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在正方形AOBC內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在葉形圖內(nèi)部的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分 和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)由直方圖可以認(rèn)為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 . ①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計總體的分布).
附: ≈19, ≈18,若Z=~N(μ,2),則P(μ﹣σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lg(x+m)(m∈R);
(1)當(dāng)m=2時,解不等式 ;
(2)若f(0)=1,且 在閉區(qū)間[2,3]上有實(shí)數(shù)解,求實(shí)數(shù)λ的范圍;
(3)如果函數(shù)f(x)的圖像過點(diǎn)(98,2),且不等式f[cos(2nx)]<lg2對任意n∈N均成立,求實(shí)數(shù)x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,C為銳角且asinA=bsinBsinC, .
(1)求C的大;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),圓Q:(x﹣2)2+(y﹣ )2=2的圓心Q在橢圓C上,點(diǎn)P(0, )到橢圓C的右焦點(diǎn)的距離為 .
(1)求橢圓C的方程;
(2)過點(diǎn)P作互相垂直的兩條直線l1 , l2 , 且l1交橢圓C于A,B兩點(diǎn),直線l2交圓Q于C,D兩點(diǎn),且M為CD的中點(diǎn),求△MAB的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com