分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用等差數(shù)列求和公式與不等式的解法即可得出.
解答 解:(1)設(shè)數(shù)列{an}公差為d,由$a_3^2={a_1}{a_{13}}得{({2+2d})^2}=2({2+12d})$…(2分)
解得d=0或d=4,…(4分)
故an=2或an=4n-2; …(6分)
(2)當(dāng)an=2時(shí),Sn=2n…(7分)Sn=2n<40n+600.不存在正整數(shù)n,使得Sn>40n+600…(8分)
當(dāng)an=4n-2時(shí),${S_n}=2{n^2}$…(9分)
由2n2>40n+600解得n>30或n<-10(舍去)
此時(shí)存在正整數(shù)n使得Sn>40n+600.且n的最小值為31.…(11分)
綜上,當(dāng)an=2時(shí),不存在正整數(shù)n,使得Sn>40n+600
當(dāng)an=4n-2時(shí),存在正整數(shù)n使得Sn>40n+600.且n的最小值為31.…(12分)
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列與等差數(shù)列的通項(xiàng)公式與求和公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{45}{2}$ | B. | 23 | C. | $\frac{47}{2}$ | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4) | B. | (-$\frac{1}{5}$,2) | C. | (2,4) | D. | (-∞,-$\frac{1}{5}$)∪(2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com