13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則方程$f(x)=\frac{1}{2}$的解集為(  )
A.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$B.$\{\sqrt{2},\frac{{\sqrt{2}}}{2}\}$C.$\{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}\}$D.$\{\sqrt{2},-\frac{{\sqrt{2}}}{2}\}$

分析 利用分段函數(shù),分段代入求解,即可得出結(jié)論.

解答 解:x≤0,${x}^{2}=\frac{1}{2}$,∴x=-$\frac{\sqrt{2}}{2}$,
x>0,$lo{g}_{2}x=\frac{1}{2}$,∴x=$\sqrt{2}$,
∴方程$f(x)=\frac{1}{2}$的解集為{$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$}.
故選D

點評 本題考查分段函數(shù),考查方程的解,正確理解分段函數(shù)是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=ln(-2x)+3x,則f′(-1)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點A(-2,3)在拋物線C:y2=2px的準線上,記C的焦點為F,則直線AF的斜率為( 。
A.-2B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{1}{a}$(α>0);
(1)如果函數(shù)F(x)=f(x)-ax+$\frac{1-α}{x}$在(1,2)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若不等式af(x)≥x在區(qū)間[1,10]恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.曲線f(x)=x2+lnx上任意一點的切線為l1,曲線g(x)=ex-ax上總有一條切線l2與l1平行,則a的取值范圍是( 。
A.$(-2\sqrt{2},2\sqrt{2})$B.$(-∞,-2\sqrt{2})$C.$(-2\sqrt{2},+∞)$D.$[-2\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將函數(shù)$y=sin(\frac{1}{2}x-\frac{π}{6})$的圖象上的所有的點橫坐標縮短為原來的$\frac{1}{2}$(縱坐標不變),再將所得的圖象向右平移$\frac{π}{3}$個單位,則所得的函數(shù)圖象對應(yīng)的解析式為(  )
A.$y=cos(\frac{1}{4}x-\frac{π}{4})$B.y=-sinxC.y=-cosxD.$y=sin(x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{AB}$=(2-k,-1),$\overrightarrow{AC}$=(1,k).
(1)若A,B,C三點共線,求k的值;
(2)若△ABC為直角三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在各項均為正數(shù)的數(shù)列{an}中,數(shù)列的前n項和為Sn,滿足Sn=1-nan(n∈N*
(1)求a1,a2,a3的值;
(2)由(1)猜想出數(shù)列{an}的通項公式,并用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$)在一個周期內(nèi)的圖象如圖所示,則$f({\frac{π}{6}})$=( 。
A.1B.$\sqrt{3}$C.-1D.$-\sqrt{3}$

查看答案和解析>>

同步練習冊答案