16.已知函數(shù)f(x)=asinx-bcosx(其中a,b為正實數(shù))的圖象關(guān)于直線$x=-\frac{π}{6}$對稱,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.$a=\sqrt{3}$,b=1
B.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象的一個對稱中心為$({\frac{2}{3}π,0})$
D.不等式f(x1)f(x2)≤4取到等號時|x2-x1|的最小值為2π

分析 將函數(shù)f(x)化簡,f(x1)f(x2)≤4恒成立,f(x)的最大值為2,即a2+b2=4.由于f(x)圖象的對稱軸為直線$x=-\frac{π}{6}$,可得$f({-\frac{π}{6}})=-\frac{1}{2}a-\frac{{\sqrt{3}}}{2}b$,求解a,b的值.可得解析式.從而根據(jù)正弦函數(shù)的圖象及性質(zhì)可得答案.

解答 解:函數(shù)f(x)=asinx-bcosx
化簡可得$f(x)=asinx-bcosx=\sqrt{{a^2}+{b^2}}sin({x-φ})$(其中$tanφ=\frac{a}$),
∵f(x1)f(x2)≤4,∴f(x)的最大值為2,∴a2+b2=4①
由于f(x)圖象的對稱軸為直線$x=-\frac{π}{6}$,
∴$f({-\frac{π}{6}})=-\frac{1}{2}a-\frac{{\sqrt{3}}}{2}b$,
∴$|{-\frac{1}{2}a-\frac{{\sqrt{3}}}{2}b}|=\sqrt{{a^2}+{b^2}}$②,
由①②解得a=1,$b=\sqrt{3}$.∴$f(x)=2sin({x-\frac{π}{3}})$,
故A錯誤.
由正弦函數(shù)的圖象及性質(zhì)可得:在區(qū)間$[{\frac{π}{6},\frac{5π}{6}}]$單調(diào)遞增,在區(qū)間$({\frac{5}{6}π,π}]$上單調(diào)遞減,故B錯誤.
將對稱中心為$({\frac{2}{3}π,0})$,解析式不成立,故C錯誤.
當f(x1)f(x2)≤4取到等號時,f(x)能取到兩個最大值2,最小間隔為一個周期2π,故選D.
故選D

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)的性質(zhì)求解出符合題意的解析式是解決本題的關(guān)鍵.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設正實數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},則集合S中元素最多有$\frac{n(n-1)}{2}$個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a>0,a≠1且a3>a2,已知函數(shù)f(x)=ax在區(qū)間[1,2]上的最大值與最小值之差為2,設函數(shù)$g(x)=1-\frac{2}{{{a^x}+1}}$.
(1)判斷函數(shù)g(x)的奇偶性;
(2)證明:$g({{x^2}-x+\frac{3}{4}})≥3-2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.對于曲線C:$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1,給出下面四個命題:
①曲線C不可能表示橢圓;
②“1<k<4”是“曲線C表示橢圓”的充分不必要條件;
③“曲線C表示雙曲線”是“k<1或k>4”的必要不充分條件;
④“曲線C表示焦點在x軸上的橢圓”是“1<k<$\frac{5}{2}$”的充要條件
其中真命題的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對于?x∈[${\frac{1}{2}$,+∞)都有2x+a≥$\sqrt{2x-1}$恒成立,則a的取值范圍為(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},+∞})$C.$({-∞,-\frac{3}{4}}]$D.$[{-\frac{3}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.用數(shù)字1,2,3,4,5組成沒有重復數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為72(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,三棱錐P-ABC的底面在平面α內(nèi),且AC⊥PC,平面PAC⊥平面PBC,點P,A,B是定點,則動點C的軌跡是( 。
A.一條線段B.一條直線
C.一個圓D.一個圓,但要去掉兩個點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將函數(shù)f(x)=sin(2x+θ)(|θ|<$\frac{π}{2}$)的圖象向右平移φ(0<φ<π)個單位長度后得到函數(shù)g(x)的圖象,若f(x)、g(x)的圖象都經(jīng)過點P(0,$\frac{1}{2}$),則φ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若cosθ-3sinθ=0,則tan(θ-$\frac{π}{4}$)=( 。
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習冊答案