16.設(shè)正實(shí)數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},則集合S中元素最多有$\frac{n(n-1)}{2}$個.

分析 假設(shè)a1,a2,a3,…,an按大小順序排列,當(dāng)a1,a2,…,an為等差數(shù)列,且首項(xiàng)為公差,集合S中的元素最多,n個數(shù)字中任取2個,之差也一定屬于a1,a2,…,an,由此能求出集合S中的元素最多的個數(shù).

解答 解:正實(shí)數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},
不妨假設(shè)a1,a2,a3,…,an按大小順序排列,
當(dāng)a1,a2,…,an為等差數(shù)列,且首項(xiàng)為公差,集合S中的元素最多,
n個數(shù)字中任取2個,之差也一定屬于a1,a2,…,an
集合S中的元素最多為:${C}_{n}^{2}$=$\frac{n(n-1)}{2}$.
故答案為:$\frac{n(n-1)}{2}$.

點(diǎn)評 本題考查集合中最多的元素個數(shù)的求法,是中檔題,解題時要認(rèn)真審題,注意等差數(shù)列性質(zhì)、排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和Sn=3n-1
(1)求a1+a4+a7+…+a3n+1
(2)設(shè)bn=an(log3an+1-log32),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,則b-a的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-3t+2}\\{y=4t+1}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸(兩坐標(biāo)系取區(qū)間的長度單位)的極坐標(biāo)系中,曲線C2:ρ=2sinθ.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)M,N分別是曲線C1和曲線C2上的動點(diǎn),求|MN|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=lnx與函數(shù)g(x)=x2+2x+a(x<0)有公切線,則實(shí)數(shù)a的取值范圍為( 。
A.(ln$\frac{1}{2e}$,+∞)B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在極坐標(biāo)系中,過點(diǎn)A(6,π)作圓ρ=-4cosθ的切線,則切線長為( 。
A.6B.$2\sqrt{3}$C.$4\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sina}\end{array}\right.$(a為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半周為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=3$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD對角線上的點(diǎn),且A1P=AQ,證明:PQ∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=asinx-bcosx(其中a,b為正實(shí)數(shù))的圖象關(guān)于直線$x=-\frac{π}{6}$對稱,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.$a=\sqrt{3}$,b=1
B.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象的一個對稱中心為$({\frac{2}{3}π,0})$
D.不等式f(x1)f(x2)≤4取到等號時|x2-x1|的最小值為2π

查看答案和解析>>

同步練習(xí)冊答案