15.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD對角線上的點,且A1P=AQ,證明:PQ∥平面BCC1B1

分析 作PE∥A1A,連接EQ,則PE∥B1B,證明EQ∥BC,可得平面PEQ∥平面BCC1B1.即可證明結(jié)論.

解答 證明:作PE∥A1A,連接EQ,則PE∥B1B,
∵A1P=AQ,A1B=AC,
∵$\frac{{A}_{1}P}{{A}_{1}B}$=$\frac{AE}{AB}$=$\frac{AQ}{AC}$,
∴EQ∥BC,
∵PE∩EQ=E,B1B∩BC=B,
∴平面PEQ∥平面BCC1B1
∵PQ?平面PEQ,
∴PQ∥平面BCC1B1

點評 本題考查平面與平面平行、線面平行的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點為F(-1,0),離心率e=$\frac{1}{2}$左右頂點分別為A、B,經(jīng)過點F的直線l與橢圓M交于C、D兩點(與A、B不重合).
(I)求橢圓M的方程;
(II)記△ABC與△ABD的面積分別為S1和S2,求|S1-S2|的最大值,并求此時l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)正實數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},則集合S中元素最多有$\frac{n(n-1)}{2}$個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{a}{3}{x^3}+\frac{2}{x^2}-{a^2}$x(a>0,b∈R).
(Ⅰ)當(dāng)a=1時,判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論;
(Ⅱ)若x1,x2是函數(shù)f(x)的兩個不同的極值點,且|x1-x2|=$\sqrt{\frac{2}{a}-1}$,求實數(shù)a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知${({\frac{1}{2}})^x}≤4$且${log_{\sqrt{3}}}x≤2$,求函數(shù)f(x)=9x-3x+1-1的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:曲線y=x2+(2m-3)x+1與x軸相交于不同的兩點;命題$q:\frac{x^2}{m}+\frac{y^2}{2}=1$表示焦點在x軸上的橢圓.若“p∨q”為真命題,“p∧q”為假命題,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a>0,a≠1且a3>a2,已知函數(shù)f(x)=ax在區(qū)間[1,2]上的最大值與最小值之差為2,設(shè)函數(shù)$g(x)=1-\frac{2}{{{a^x}+1}}$.
(1)判斷函數(shù)g(x)的奇偶性;
(2)證明:$g({{x^2}-x+\frac{3}{4}})≥3-2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于曲線C:$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1,給出下面四個命題:
①曲線C不可能表示橢圓;
②“1<k<4”是“曲線C表示橢圓”的充分不必要條件;
③“曲線C表示雙曲線”是“k<1或k>4”的必要不充分條件;
④“曲線C表示焦點在x軸上的橢圓”是“1<k<$\frac{5}{2}$”的充要條件
其中真命題的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)f(x)=sin(2x+θ)(|θ|<$\frac{π}{2}$)的圖象向右平移φ(0<φ<π)個單位長度后得到函數(shù)g(x)的圖象,若f(x)、g(x)的圖象都經(jīng)過點P(0,$\frac{1}{2}$),則φ=$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案