10.已知${({\frac{1}{2}})^x}≤4$且${log_{\sqrt{3}}}x≤2$,求函數(shù)f(x)=9x-3x+1-1的最大值和最小值.

分析 由指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,解得0<x≤3,可令t=3x,則1<t≤27,將f(x)變形為g(t)=t2-3t-1,由二次函數(shù)的最值求法,即可得到所求值.

解答 解:由${({\frac{1}{2}})^x}≤4$且${log_{\sqrt{3}}}x≤2$,
可得2-x≤22且log${\;}_{\sqrt{3}}$x≤log${\;}_{\sqrt{3}}$3,
解得x≥-2且0<x≤3,
即為0<x≤3,
可令t=3x,則1<t≤27,
即有函數(shù)f(x)=9x-3x+1-1
即為函數(shù)g(t)=t2-3t-1=(t-$\frac{3}{2}$)2-$\frac{13}{4}$,
當(dāng)t=$\frac{3}{2}$即x=log2$\frac{3}{2}$時,函數(shù)取得最小值-$\frac{13}{4}$;
當(dāng)t=27即x=3時,函數(shù)取得最大值647.

點評 本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的運用:解不等式和求最值,考查換元法的運用,運用二次函數(shù)在閉區(qū)間上的最值求法是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點$({1,\frac{{\sqrt{2}}}{2}})$,且焦距為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過點P(-2,0)的直線l與橢圓C交于不同的兩點A,B,點$G({0,-\frac{1}{2}})$,如果|GA|=|GB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=lnx與函數(shù)g(x)=x2+2x+a(x<0)有公切線,則實數(shù)a的取值范圍為(  )
A.(ln$\frac{1}{2e}$,+∞)B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sina}\end{array}\right.$(a為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半周為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=3$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.否定結(jié)論“至多有一個解”的說法中,正確的是( 。
A.有一個解B.有兩個解C.至少有三個解D.至少有兩個解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD對角線上的點,且A1P=AQ,證明:PQ∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sinα=-$\frac{5}{13}$,且tanα>0,則cosα=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線x-2y+2=0與圓C:x2+y2-4y+m=0相交,截得的弦長為$\frac{{2\sqrt{5}}}{5}$.
(1)求圓C的方程;
(2)已知P(2,4),過P向圓C引兩條切線分別與拋物線y=x2交與點Q、R(異于R點),判斷直線QR與圓C的位置關(guān)系,并加以說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B,C是單位圓上互不相同的三點,且滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$$•\overrightarrow{AC}$的最小值為( 。
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

同步練習(xí)冊答案